Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285173631> ?p ?o ?g. }
- W4285173631 endingPage "11939" @default.
- W4285173631 startingPage "11928" @default.
- W4285173631 abstract "Motor imagery-based brain-computer interface (MI-BCI) is considered to be the most promising technology, which can help patients with muscle disorders to carry out rehabilitation training and assist in activities of daily living. However, the time window and frequency band of the ERD/ERS pattern activated by motor imagery vary from person to person. In this study, we propose a power spectrum pattern difference-based time-frequency sub-band selection (PSPD) method, which can further improve the classification performance of MI EEG. To better analyze the sensorimotor rhythm, we divide the EEG channels and extract the average and maximum pattern difference of the power spectrum according to the division. Then, the difference metric of the power spectrum pattern difference of inter-sample sets is calculated by dynamic time warping distance, and the consistency metric of the power spectrum pattern difference of intra-sample sets is calculated by mean pooling, and the optimal time-frequency sub-band is selected based on these two metrics. Finally, the optimal time-frequency sub-bands are respectively used for the common spatial pattern feature extraction and the linear kernel support vector machine classification. The proposed PSPD method achieves an average classification accuracy of 84.51%, 84.10% and 73.21% in BCI Competition IV Dataset IIa, Dataset IIb and OpenBMI dataset, respectively. Compared with the state-of-the-art methods, the PSPD method achieves the highest classification accuracy and good stability on three datasets. Excellent experimental results show that the PSPD method has great potential in MI-BCI’s motion intention decoding." @default.
- W4285173631 created "2022-07-14" @default.
- W4285173631 creator A5001016150 @default.
- W4285173631 creator A5004957097 @default.
- W4285173631 creator A5018768566 @default.
- W4285173631 creator A5021984184 @default.
- W4285173631 creator A5029753575 @default.
- W4285173631 creator A5052037779 @default.
- W4285173631 creator A5061524454 @default.
- W4285173631 creator A5069291530 @default.
- W4285173631 date "2022-06-15" @default.
- W4285173631 modified "2023-10-17" @default.
- W4285173631 title "A Power Spectrum Pattern Difference-Based Time-Frequency Sub-Band Selection Method for MI-EEG Classification" @default.
- W4285173631 cites W1973481739 @default.
- W4285173631 cites W2001295445 @default.
- W4285173631 cites W2010371409 @default.
- W4285173631 cites W2017855408 @default.
- W4285173631 cites W2078945519 @default.
- W4285173631 cites W2106006415 @default.
- W4285173631 cites W2128404967 @default.
- W4285173631 cites W2131321253 @default.
- W4285173631 cites W2136319620 @default.
- W4285173631 cites W2142280324 @default.
- W4285173631 cites W2152863712 @default.
- W4285173631 cites W2168500935 @default.
- W4285173631 cites W2478892419 @default.
- W4285173631 cites W2533322963 @default.
- W4285173631 cites W2580126563 @default.
- W4285173631 cites W2741907166 @default.
- W4285173631 cites W2768531411 @default.
- W4285173631 cites W2778132994 @default.
- W4285173631 cites W2800566345 @default.
- W4285173631 cites W2802723950 @default.
- W4285173631 cites W2808098316 @default.
- W4285173631 cites W2891952629 @default.
- W4285173631 cites W2901429813 @default.
- W4285173631 cites W2909776917 @default.
- W4285173631 cites W2912885887 @default.
- W4285173631 cites W2942101380 @default.
- W4285173631 cites W2948107578 @default.
- W4285173631 cites W2953384096 @default.
- W4285173631 cites W2960585436 @default.
- W4285173631 cites W2963427114 @default.
- W4285173631 cites W2986984881 @default.
- W4285173631 cites W2990995515 @default.
- W4285173631 cites W2991183506 @default.
- W4285173631 cites W2998747857 @default.
- W4285173631 cites W3015763592 @default.
- W4285173631 cites W3026899257 @default.
- W4285173631 cites W3040234958 @default.
- W4285173631 cites W3040552008 @default.
- W4285173631 cites W3080395176 @default.
- W4285173631 cites W3102455230 @default.
- W4285173631 cites W3127935830 @default.
- W4285173631 cites W3132262270 @default.
- W4285173631 cites W3133598629 @default.
- W4285173631 cites W3148140065 @default.
- W4285173631 cites W3171339735 @default.
- W4285173631 cites W3174166874 @default.
- W4285173631 cites W3207696354 @default.
- W4285173631 cites W3214030113 @default.
- W4285173631 cites W3214485623 @default.
- W4285173631 cites W4213201803 @default.
- W4285173631 cites W4221044575 @default.
- W4285173631 doi "https://doi.org/10.1109/jsen.2022.3171808" @default.
- W4285173631 hasPublicationYear "2022" @default.
- W4285173631 type Work @default.
- W4285173631 citedByCount "2" @default.
- W4285173631 countsByYear W42851736312023 @default.
- W4285173631 crossrefType "journal-article" @default.
- W4285173631 hasAuthorship W4285173631A5001016150 @default.
- W4285173631 hasAuthorship W4285173631A5004957097 @default.
- W4285173631 hasAuthorship W4285173631A5018768566 @default.
- W4285173631 hasAuthorship W4285173631A5021984184 @default.
- W4285173631 hasAuthorship W4285173631A5029753575 @default.
- W4285173631 hasAuthorship W4285173631A5052037779 @default.
- W4285173631 hasAuthorship W4285173631A5061524454 @default.
- W4285173631 hasAuthorship W4285173631A5069291530 @default.
- W4285173631 hasConcept C105795698 @default.
- W4285173631 hasConcept C114614502 @default.
- W4285173631 hasConcept C118552586 @default.
- W4285173631 hasConcept C12267149 @default.
- W4285173631 hasConcept C127413603 @default.
- W4285173631 hasConcept C153180895 @default.
- W4285173631 hasConcept C154945302 @default.
- W4285173631 hasConcept C15744967 @default.
- W4285173631 hasConcept C168110828 @default.
- W4285173631 hasConcept C173201364 @default.
- W4285173631 hasConcept C176217482 @default.
- W4285173631 hasConcept C21547014 @default.
- W4285173631 hasConcept C2776257435 @default.
- W4285173631 hasConcept C2778116611 @default.
- W4285173631 hasConcept C31258907 @default.
- W4285173631 hasConcept C33923547 @default.
- W4285173631 hasConcept C41008148 @default.
- W4285173631 hasConcept C522805319 @default.
- W4285173631 hasConcept C52622490 @default.
- W4285173631 hasConcept C54808283 @default.