Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285174670> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4285174670 endingPage "11554" @default.
- W4285174670 startingPage "11540" @default.
- W4285174670 abstract "Recent research showcased several cyber-attacks against unmodified licensed vehicles, demonstrating the vulnerability of their internal networks. Many solutions have already been proposed by industry and academia, aiming to detect and prevent cyber-attacks targeting in-vehicle networks. The majority of these proposals borrow security algorithms and techniques from the classical ICT domain, and in many cases they do not consider the inherent limitations of legacy automotive protocols and resource-constrained microcontrollers. This paper proposes <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>DAGA</b> , an anomaly detection algorithm for in-vehicle networks exploiting <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$n-$</tex-math></inline-formula> gram analysis. DAGA only uses sequences of CAN message IDs for the definition of the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$n-$</tex-math></inline-formula> grams used in the detection process, without requiring the content of the payload or other CAN message fields. The DAGA framework allows the creation of detection models characterized by different memory footprints, allowing their deployment on microcontrollers with different hardware constraints. Experimental results based on three prototype implementations of DAGA showcase the trade off between hardware requirements and detection performance. DAGA outperforms the state-of-the-art detectors on the most performing microcontrollers, and can execute with lower performance on simple microcontrollers that cannot support the vast majority of IDS approaches proposed in literature. As additional contributions, we publicly release the full dataset and our reference DAGA implementations." @default.
- W4285174670 created "2022-07-14" @default.
- W4285174670 creator A5012440223 @default.
- W4285174670 creator A5038535130 @default.
- W4285174670 creator A5039611983 @default.
- W4285174670 creator A5039756167 @default.
- W4285174670 date "2022-11-01" @default.
- W4285174670 modified "2023-09-25" @default.
- W4285174670 title "DAGA: Detecting Attacks to In-Vehicle Networks via N-Gram Analysis" @default.
- W4285174670 cites W1988146703 @default.
- W4285174670 cites W2008332894 @default.
- W4285174670 cites W2038819732 @default.
- W4285174670 cites W2058929792 @default.
- W4285174670 cites W2064274762 @default.
- W4285174670 cites W2080575300 @default.
- W4285174670 cites W2090747326 @default.
- W4285174670 cites W2096279841 @default.
- W4285174670 cites W2122646361 @default.
- W4285174670 cites W2133854595 @default.
- W4285174670 cites W2461378669 @default.
- W4285174670 cites W2536935267 @default.
- W4285174670 cites W2545810962 @default.
- W4285174670 cites W2549079146 @default.
- W4285174670 cites W2605933137 @default.
- W4285174670 cites W2613215397 @default.
- W4285174670 cites W2620604911 @default.
- W4285174670 cites W2703342623 @default.
- W4285174670 cites W2739928414 @default.
- W4285174670 cites W2743241167 @default.
- W4285174670 cites W2752558064 @default.
- W4285174670 cites W2891250288 @default.
- W4285174670 cites W2891789701 @default.
- W4285174670 cites W2948384692 @default.
- W4285174670 cites W2948886424 @default.
- W4285174670 cites W2971105163 @default.
- W4285174670 cites W2984712157 @default.
- W4285174670 cites W2988808803 @default.
- W4285174670 cites W2991024251 @default.
- W4285174670 cites W2993500098 @default.
- W4285174670 cites W3014294587 @default.
- W4285174670 cites W3017478614 @default.
- W4285174670 cites W3109186952 @default.
- W4285174670 cites W3132421801 @default.
- W4285174670 cites W3169409964 @default.
- W4285174670 cites W3215147408 @default.
- W4285174670 cites W4220842203 @default.
- W4285174670 cites W4294338787 @default.
- W4285174670 doi "https://doi.org/10.1109/tvt.2022.3190721" @default.
- W4285174670 hasPublicationYear "2022" @default.
- W4285174670 type Work @default.
- W4285174670 citedByCount "4" @default.
- W4285174670 countsByYear W42851746702022 @default.
- W4285174670 countsByYear W42851746702023 @default.
- W4285174670 crossrefType "journal-article" @default.
- W4285174670 hasAuthorship W4285174670A5012440223 @default.
- W4285174670 hasAuthorship W4285174670A5038535130 @default.
- W4285174670 hasAuthorship W4285174670A5039611983 @default.
- W4285174670 hasAuthorship W4285174670A5039756167 @default.
- W4285174670 hasConcept C11413529 @default.
- W4285174670 hasConcept C134066672 @default.
- W4285174670 hasConcept C149635348 @default.
- W4285174670 hasConcept C158379750 @default.
- W4285174670 hasConcept C173018170 @default.
- W4285174670 hasConcept C38652104 @default.
- W4285174670 hasConcept C41008148 @default.
- W4285174670 hasConceptScore W4285174670C11413529 @default.
- W4285174670 hasConceptScore W4285174670C134066672 @default.
- W4285174670 hasConceptScore W4285174670C149635348 @default.
- W4285174670 hasConceptScore W4285174670C158379750 @default.
- W4285174670 hasConceptScore W4285174670C173018170 @default.
- W4285174670 hasConceptScore W4285174670C38652104 @default.
- W4285174670 hasConceptScore W4285174670C41008148 @default.
- W4285174670 hasIssue "11" @default.
- W4285174670 hasLocation W42851746701 @default.
- W4285174670 hasOpenAccess W4285174670 @default.
- W4285174670 hasPrimaryLocation W42851746701 @default.
- W4285174670 hasRelatedWork W2147310439 @default.
- W4285174670 hasRelatedWork W2351039487 @default.
- W4285174670 hasRelatedWork W2368667795 @default.
- W4285174670 hasRelatedWork W2370877204 @default.
- W4285174670 hasRelatedWork W2613381603 @default.
- W4285174670 hasRelatedWork W2896174870 @default.
- W4285174670 hasRelatedWork W3091627987 @default.
- W4285174670 hasRelatedWork W4206494899 @default.
- W4285174670 hasRelatedWork W4288457199 @default.
- W4285174670 hasRelatedWork W3095757606 @default.
- W4285174670 hasVolume "71" @default.
- W4285174670 isParatext "false" @default.
- W4285174670 isRetracted "false" @default.
- W4285174670 workType "article" @default.