Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285176535> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4285176535 endingPage "16642" @default.
- W4285176535 startingPage "16632" @default.
- W4285176535 abstract "The detection and recognition of traffic signs is an important topic in intelligent transportation systems. The automatic detection and recognition of traffic signs during driving is the basis for realizing the unmanned driving. Therefore, the work on the detection and recognition of traffic signs has a potential value and application prospect. In the traditional detection and recognition methods, they often detect and recognize traffic signs image by image. In this case, only the information of the current image is used, and the relationship between the image sequences is not considered. To end this issue, we propose a novel model that can use the relationship in multi-images to detect and recognize traffic signs in a driving video sequence quickly and accurately. The model proposed in this paper is a fusion model based on YOLO-V3 and VGG19 network. Finally, we test this proposed model on a public dataset and compare it to the baseline method, and results show that this proposed model achieves accuracy over 90% and outperforms the baseline method for all types of traffic signs in different conditions. Thus, we can conclude this proposed model is efficient and accurate." @default.
- W4285176535 created "2022-07-14" @default.
- W4285176535 creator A5049833213 @default.
- W4285176535 creator A5078004482 @default.
- W4285176535 creator A5088103819 @default.
- W4285176535 date "2022-09-01" @default.
- W4285176535 modified "2023-10-16" @default.
- W4285176535 title "Traffic Sign Detection and Recognition in Multiimages Using a Fusion Model With YOLO and VGG Network" @default.
- W4285176535 cites W1978736542 @default.
- W4285176535 cites W2046812143 @default.
- W4285176535 cites W2058807357 @default.
- W4285176535 cites W2131171972 @default.
- W4285176535 cites W2136094925 @default.
- W4285176535 cites W2276973678 @default.
- W4285176535 cites W2312582804 @default.
- W4285176535 cites W2317354861 @default.
- W4285176535 cites W2345272516 @default.
- W4285176535 cites W2588391947 @default.
- W4285176535 cites W2605579118 @default.
- W4285176535 cites W2910140383 @default.
- W4285176535 cites W2940955785 @default.
- W4285176535 cites W2995595439 @default.
- W4285176535 cites W2995764040 @default.
- W4285176535 cites W2997880346 @default.
- W4285176535 cites W3033300656 @default.
- W4285176535 cites W3093707352 @default.
- W4285176535 cites W3111897001 @default.
- W4285176535 cites W3121101473 @default.
- W4285176535 cites W401751405 @default.
- W4285176535 doi "https://doi.org/10.1109/tits.2022.3170354" @default.
- W4285176535 hasPublicationYear "2022" @default.
- W4285176535 type Work @default.
- W4285176535 citedByCount "6" @default.
- W4285176535 countsByYear W42851765352023 @default.
- W4285176535 crossrefType "journal-article" @default.
- W4285176535 hasAuthorship W4285176535A5049833213 @default.
- W4285176535 hasAuthorship W4285176535A5078004482 @default.
- W4285176535 hasAuthorship W4285176535A5088103819 @default.
- W4285176535 hasConcept C115961682 @default.
- W4285176535 hasConcept C127413603 @default.
- W4285176535 hasConcept C134306372 @default.
- W4285176535 hasConcept C139676723 @default.
- W4285176535 hasConcept C147176958 @default.
- W4285176535 hasConcept C153180895 @default.
- W4285176535 hasConcept C154945302 @default.
- W4285176535 hasConcept C2776151529 @default.
- W4285176535 hasConcept C2983860417 @default.
- W4285176535 hasConcept C31972630 @default.
- W4285176535 hasConcept C33923547 @default.
- W4285176535 hasConcept C41008148 @default.
- W4285176535 hasConcept C47796450 @default.
- W4285176535 hasConcept C52622490 @default.
- W4285176535 hasConcept C6528762 @default.
- W4285176535 hasConceptScore W4285176535C115961682 @default.
- W4285176535 hasConceptScore W4285176535C127413603 @default.
- W4285176535 hasConceptScore W4285176535C134306372 @default.
- W4285176535 hasConceptScore W4285176535C139676723 @default.
- W4285176535 hasConceptScore W4285176535C147176958 @default.
- W4285176535 hasConceptScore W4285176535C153180895 @default.
- W4285176535 hasConceptScore W4285176535C154945302 @default.
- W4285176535 hasConceptScore W4285176535C2776151529 @default.
- W4285176535 hasConceptScore W4285176535C2983860417 @default.
- W4285176535 hasConceptScore W4285176535C31972630 @default.
- W4285176535 hasConceptScore W4285176535C33923547 @default.
- W4285176535 hasConceptScore W4285176535C41008148 @default.
- W4285176535 hasConceptScore W4285176535C47796450 @default.
- W4285176535 hasConceptScore W4285176535C52622490 @default.
- W4285176535 hasConceptScore W4285176535C6528762 @default.
- W4285176535 hasFunder F4320335777 @default.
- W4285176535 hasIssue "9" @default.
- W4285176535 hasLocation W42851765351 @default.
- W4285176535 hasOpenAccess W4285176535 @default.
- W4285176535 hasPrimaryLocation W42851765351 @default.
- W4285176535 hasRelatedWork W2079555348 @default.
- W4285176535 hasRelatedWork W2104761490 @default.
- W4285176535 hasRelatedWork W2552460741 @default.
- W4285176535 hasRelatedWork W2888423132 @default.
- W4285176535 hasRelatedWork W2899819381 @default.
- W4285176535 hasRelatedWork W2922421953 @default.
- W4285176535 hasRelatedWork W3002270006 @default.
- W4285176535 hasRelatedWork W3128164723 @default.
- W4285176535 hasRelatedWork W4377081775 @default.
- W4285176535 hasRelatedWork W4379231512 @default.
- W4285176535 hasVolume "23" @default.
- W4285176535 isParatext "false" @default.
- W4285176535 isRetracted "false" @default.
- W4285176535 workType "article" @default.