Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285177834> ?p ?o ?g. }
- W4285177834 endingPage "15632" @default.
- W4285177834 startingPage "15612" @default.
- W4285177834 abstract "<abstract><p>The fractional advection-reaction-diffusion equation plays a key role in describing the processes of multiple species transported by a fluid. Different numerical methods have been proposed for the case of fixed-order derivatives, while there are no such methods for the generalization of variable-order cases. In this paper, a numerical treatment is given to solve a variable-order model with time fractional derivative defined in the Atangana-Baleanu-Caputo sense. By using shifted Gegenbauer cardinal function, this approach is based on the application of spectral collocation method and operator matrices. Then the desired problem is transformed into solving a nonlinear system, which can greatly simplifies the solution process. Numerical experiments are presented to illustrate the effectiveness and accuracy of the proposed method.</p></abstract>" @default.
- W4285177834 created "2022-07-14" @default.
- W4285177834 creator A5013412405 @default.
- W4285177834 creator A5043074622 @default.
- W4285177834 creator A5055374370 @default.
- W4285177834 date "2022-01-01" @default.
- W4285177834 modified "2023-09-25" @default.
- W4285177834 title "Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials" @default.
- W4285177834 cites W1571391776 @default.
- W4285177834 cites W1918992731 @default.
- W4285177834 cites W1969399740 @default.
- W4285177834 cites W2019139119 @default.
- W4285177834 cites W2055571881 @default.
- W4285177834 cites W2128144478 @default.
- W4285177834 cites W2158629510 @default.
- W4285177834 cites W2228681942 @default.
- W4285177834 cites W2411553598 @default.
- W4285177834 cites W2511734545 @default.
- W4285177834 cites W2806544512 @default.
- W4285177834 cites W2883589886 @default.
- W4285177834 cites W2887922762 @default.
- W4285177834 cites W2914170536 @default.
- W4285177834 cites W2963641381 @default.
- W4285177834 cites W2964247971 @default.
- W4285177834 cites W2969790040 @default.
- W4285177834 cites W2977858759 @default.
- W4285177834 cites W2990735698 @default.
- W4285177834 cites W2991448609 @default.
- W4285177834 cites W2997007993 @default.
- W4285177834 cites W3001278056 @default.
- W4285177834 cites W3006262055 @default.
- W4285177834 cites W3010495194 @default.
- W4285177834 cites W3044368150 @default.
- W4285177834 cites W3108227513 @default.
- W4285177834 cites W3145860053 @default.
- W4285177834 cites W3146488794 @default.
- W4285177834 cites W3164799144 @default.
- W4285177834 cites W3178628201 @default.
- W4285177834 cites W3188734037 @default.
- W4285177834 cites W3203635614 @default.
- W4285177834 cites W3214937974 @default.
- W4285177834 cites W4298060601 @default.
- W4285177834 doi "https://doi.org/10.3934/math.2022855" @default.
- W4285177834 hasPublicationYear "2022" @default.
- W4285177834 type Work @default.
- W4285177834 citedByCount "0" @default.
- W4285177834 crossrefType "journal-article" @default.
- W4285177834 hasAuthorship W4285177834A5013412405 @default.
- W4285177834 hasAuthorship W4285177834A5043074622 @default.
- W4285177834 hasAuthorship W4285177834A5055374370 @default.
- W4285177834 hasBestOaLocation W42851778341 @default.
- W4285177834 hasConcept C10138342 @default.
- W4285177834 hasConcept C104317684 @default.
- W4285177834 hasConcept C106159729 @default.
- W4285177834 hasConcept C111771559 @default.
- W4285177834 hasConcept C119857082 @default.
- W4285177834 hasConcept C121231716 @default.
- W4285177834 hasConcept C121332964 @default.
- W4285177834 hasConcept C134306372 @default.
- W4285177834 hasConcept C14036430 @default.
- W4285177834 hasConcept C154249771 @default.
- W4285177834 hasConcept C158448853 @default.
- W4285177834 hasConcept C158622935 @default.
- W4285177834 hasConcept C162324750 @default.
- W4285177834 hasConcept C17020691 @default.
- W4285177834 hasConcept C177148314 @default.
- W4285177834 hasConcept C182306322 @default.
- W4285177834 hasConcept C182365436 @default.
- W4285177834 hasConcept C185592680 @default.
- W4285177834 hasConcept C23463724 @default.
- W4285177834 hasConcept C28826006 @default.
- W4285177834 hasConcept C33923547 @default.
- W4285177834 hasConcept C41008148 @default.
- W4285177834 hasConcept C5072599 @default.
- W4285177834 hasConcept C55493867 @default.
- W4285177834 hasConcept C62520636 @default.
- W4285177834 hasConcept C69357855 @default.
- W4285177834 hasConcept C78458016 @default.
- W4285177834 hasConcept C80023036 @default.
- W4285177834 hasConcept C86339819 @default.
- W4285177834 hasConcept C86803240 @default.
- W4285177834 hasConcept C97355855 @default.
- W4285177834 hasConceptScore W4285177834C10138342 @default.
- W4285177834 hasConceptScore W4285177834C104317684 @default.
- W4285177834 hasConceptScore W4285177834C106159729 @default.
- W4285177834 hasConceptScore W4285177834C111771559 @default.
- W4285177834 hasConceptScore W4285177834C119857082 @default.
- W4285177834 hasConceptScore W4285177834C121231716 @default.
- W4285177834 hasConceptScore W4285177834C121332964 @default.
- W4285177834 hasConceptScore W4285177834C134306372 @default.
- W4285177834 hasConceptScore W4285177834C14036430 @default.
- W4285177834 hasConceptScore W4285177834C154249771 @default.
- W4285177834 hasConceptScore W4285177834C158448853 @default.
- W4285177834 hasConceptScore W4285177834C158622935 @default.
- W4285177834 hasConceptScore W4285177834C162324750 @default.
- W4285177834 hasConceptScore W4285177834C17020691 @default.
- W4285177834 hasConceptScore W4285177834C177148314 @default.
- W4285177834 hasConceptScore W4285177834C182306322 @default.