Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285178093> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4285178093 endingPage "1055" @default.
- W4285178093 startingPage "1041" @default.
- W4285178093 abstract "Today, many eye diseases jeopardize our everyday lives, such as Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD), and Glaucoma. Glaucoma is an incurable and unavoidable eye disease that damages the vision of optic nerves and quality of life. Classification of Glaucoma has been an active field of research for the past ten years. Several approaches for Glaucoma classification are established, beginning with conventional segmentation methods and feature-extraction to deep-learning techniques such as Convolution Neural Networks (CNN). In contrast, CNN classifies the input images directly using tuned parameters of convolution and pooling layers by extracting features. But, the volume of training datasets determines the performance of the CNN; the model trained with small datasets, overfit issues arise. CNN has therefore developed with transfer learning. The primary aim of this study is to explore the potential of EfficientNet with transfer learning for the classification of Glaucoma. The performance of the current work compares with other models, namely VGG16, InceptionV3, and Xception using public datasets such as RIM-ONEV2 & V3, ORIGA, DRISHTI-GS1, HRF, and ACRIMA. The dataset has split into training, validation, and testing with the ratio of 70:15:15. The assessment of the test dataset shows that the pre-trained EfficientNetB4 has achieved the highest performance value compared to other models listed above. The proposed method achieved 99.38% accuracy and also better results for other metrics, such as sensitivity, specificity, precision, F1_score, Kappa score, and Area Under Curve (AUC) compared to other models." @default.
- W4285178093 created "2022-07-14" @default.
- W4285178093 creator A5035106467 @default.
- W4285178093 creator A5050223771 @default.
- W4285178093 date "2022-01-01" @default.
- W4285178093 modified "2023-10-14" @default.
- W4285178093 title "Classification of Glaucoma in Retinal Images Using EfficientnetB4 Deep Learning Model" @default.
- W4285178093 cites W2001318290 @default.
- W4285178093 cites W2057266151 @default.
- W4285178093 cites W2061715187 @default.
- W4285178093 cites W2065385897 @default.
- W4285178093 cites W2081178133 @default.
- W4285178093 cites W2100756624 @default.
- W4285178093 cites W2108824200 @default.
- W4285178093 cites W2111641487 @default.
- W4285178093 cites W2112796928 @default.
- W4285178093 cites W2117539524 @default.
- W4285178093 cites W2123215356 @default.
- W4285178093 cites W2160605010 @default.
- W4285178093 cites W2346062110 @default.
- W4285178093 cites W2733902253 @default.
- W4285178093 cites W2741346289 @default.
- W4285178093 cites W2793119512 @default.
- W4285178093 cites W2912806832 @default.
- W4285178093 cites W3125402222 @default.
- W4285178093 cites W3152497941 @default.
- W4285178093 doi "https://doi.org/10.32604/csse.2022.023680" @default.
- W4285178093 hasPublicationYear "2022" @default.
- W4285178093 type Work @default.
- W4285178093 citedByCount "2" @default.
- W4285178093 countsByYear W42851780932023 @default.
- W4285178093 crossrefType "journal-article" @default.
- W4285178093 hasAuthorship W4285178093A5035106467 @default.
- W4285178093 hasAuthorship W4285178093A5050223771 @default.
- W4285178093 hasBestOaLocation W42851780931 @default.
- W4285178093 hasConcept C108583219 @default.
- W4285178093 hasConcept C118487528 @default.
- W4285178093 hasConcept C119857082 @default.
- W4285178093 hasConcept C150899416 @default.
- W4285178093 hasConcept C153180895 @default.
- W4285178093 hasConcept C154945302 @default.
- W4285178093 hasConcept C22019652 @default.
- W4285178093 hasConcept C2778527774 @default.
- W4285178093 hasConcept C41008148 @default.
- W4285178093 hasConcept C50644808 @default.
- W4285178093 hasConcept C52622490 @default.
- W4285178093 hasConcept C71924100 @default.
- W4285178093 hasConcept C81363708 @default.
- W4285178093 hasConcept C89600930 @default.
- W4285178093 hasConceptScore W4285178093C108583219 @default.
- W4285178093 hasConceptScore W4285178093C118487528 @default.
- W4285178093 hasConceptScore W4285178093C119857082 @default.
- W4285178093 hasConceptScore W4285178093C150899416 @default.
- W4285178093 hasConceptScore W4285178093C153180895 @default.
- W4285178093 hasConceptScore W4285178093C154945302 @default.
- W4285178093 hasConceptScore W4285178093C22019652 @default.
- W4285178093 hasConceptScore W4285178093C2778527774 @default.
- W4285178093 hasConceptScore W4285178093C41008148 @default.
- W4285178093 hasConceptScore W4285178093C50644808 @default.
- W4285178093 hasConceptScore W4285178093C52622490 @default.
- W4285178093 hasConceptScore W4285178093C71924100 @default.
- W4285178093 hasConceptScore W4285178093C81363708 @default.
- W4285178093 hasConceptScore W4285178093C89600930 @default.
- W4285178093 hasIssue "3" @default.
- W4285178093 hasLocation W42851780931 @default.
- W4285178093 hasOpenAccess W4285178093 @default.
- W4285178093 hasPrimaryLocation W42851780931 @default.
- W4285178093 hasRelatedWork W2767651786 @default.
- W4285178093 hasRelatedWork W3012393889 @default.
- W4285178093 hasRelatedWork W3091976719 @default.
- W4285178093 hasRelatedWork W3099765033 @default.
- W4285178093 hasRelatedWork W3192840557 @default.
- W4285178093 hasRelatedWork W4220996320 @default.
- W4285178093 hasRelatedWork W4224526119 @default.
- W4285178093 hasRelatedWork W4310880831 @default.
- W4285178093 hasRelatedWork W4313020796 @default.
- W4285178093 hasRelatedWork W4313289428 @default.
- W4285178093 hasVolume "43" @default.
- W4285178093 isParatext "false" @default.
- W4285178093 isRetracted "false" @default.
- W4285178093 workType "article" @default.