Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285179601> ?p ?o ?g. }
- W4285179601 endingPage "20135" @default.
- W4285179601 startingPage "20122" @default.
- W4285179601 abstract "The Internet of Things (IoT) has enormous potential to transform the transport industry by improving passenger experiences, safety, and efficiency. However, the collected spatiotemporal data by traffic sensor network often suffer from missing values (MVs), which affect the overall performance of the system. As a result, accurate recovery of MVs is essential for the successful application of IoT in transportation. In this article, we propose a novel MVs imputation model by integrating low-rank tensor completion (LRTC) and sparse self-representation into a unified framework. In doing so, the global multidimensional correlation, as well as sample self-similarity, can be well leveraged for imputation. In order to solve the proposed model, an elaborate solution algorithm is developed, following the principle of alternating direction method of multipliers (ADMMs). Importantly, each step in ADMM can be implemented efficiently by analyzing the problem structure. Moreover, in order to select proper parameters for the model, an improved harmony search heuristic algorithm based on dual harmonies generation strategy is developed, thus sufficiently considering the information contained in current harmony memory. The experiments on two real-world traffic data are carried out to evaluate the proposed approach. The results verify that in comparison with the classic matrix/tensor completion and other competing algorithms, our method significantly improves the imputation performance." @default.
- W4285179601 created "2022-07-14" @default.
- W4285179601 creator A5010949964 @default.
- W4285179601 creator A5027792053 @default.
- W4285179601 creator A5054828927 @default.
- W4285179601 creator A5079457723 @default.
- W4285179601 date "2022-10-15" @default.
- W4285179601 modified "2023-10-16" @default.
- W4285179601 title "A Novel Spatiotemporal Data Low-Rank Imputation Approach for Traffic Sensor Network" @default.
- W4285179601 cites W1967575164 @default.
- W4285179601 cites W1983479840 @default.
- W4285179601 cites W1993885071 @default.
- W4285179601 cites W2039015671 @default.
- W4285179601 cites W2064186732 @default.
- W4285179601 cites W2064675550 @default.
- W4285179601 cites W2090035883 @default.
- W4285179601 cites W2091449379 @default.
- W4285179601 cites W2096863518 @default.
- W4285179601 cites W2103972604 @default.
- W4285179601 cites W2114933215 @default.
- W4285179601 cites W2115098571 @default.
- W4285179601 cites W2115337059 @default.
- W4285179601 cites W2125027820 @default.
- W4285179601 cites W2129131372 @default.
- W4285179601 cites W2130187411 @default.
- W4285179601 cites W2162210260 @default.
- W4285179601 cites W2163150789 @default.
- W4285179601 cites W2293724770 @default.
- W4285179601 cites W2343462218 @default.
- W4285179601 cites W2604847698 @default.
- W4285179601 cites W2605190428 @default.
- W4285179601 cites W2611328865 @default.
- W4285179601 cites W2616654950 @default.
- W4285179601 cites W2726858467 @default.
- W4285179601 cites W2792584708 @default.
- W4285179601 cites W2799891732 @default.
- W4285179601 cites W2801457640 @default.
- W4285179601 cites W2802508687 @default.
- W4285179601 cites W2889175325 @default.
- W4285179601 cites W2899300491 @default.
- W4285179601 cites W2902048196 @default.
- W4285179601 cites W2926585089 @default.
- W4285179601 cites W2939939530 @default.
- W4285179601 cites W2964010366 @default.
- W4285179601 cites W2991063736 @default.
- W4285179601 cites W2999732489 @default.
- W4285179601 cites W3004178587 @default.
- W4285179601 cites W3034951560 @default.
- W4285179601 cites W3045435486 @default.
- W4285179601 cites W3109901740 @default.
- W4285179601 cites W3157605589 @default.
- W4285179601 cites W3166291381 @default.
- W4285179601 cites W3169524537 @default.
- W4285179601 cites W4229706427 @default.
- W4285179601 cites W4244133811 @default.
- W4285179601 doi "https://doi.org/10.1109/jiot.2022.3172447" @default.
- W4285179601 hasPublicationYear "2022" @default.
- W4285179601 type Work @default.
- W4285179601 citedByCount "2" @default.
- W4285179601 countsByYear W42851796012023 @default.
- W4285179601 crossrefType "journal-article" @default.
- W4285179601 hasAuthorship W4285179601A5010949964 @default.
- W4285179601 hasAuthorship W4285179601A5027792053 @default.
- W4285179601 hasAuthorship W4285179601A5054828927 @default.
- W4285179601 hasAuthorship W4285179601A5079457723 @default.
- W4285179601 hasConcept C11413529 @default.
- W4285179601 hasConcept C119857082 @default.
- W4285179601 hasConcept C124101348 @default.
- W4285179601 hasConcept C154945302 @default.
- W4285179601 hasConcept C33099171 @default.
- W4285179601 hasConcept C41008148 @default.
- W4285179601 hasConcept C58041806 @default.
- W4285179601 hasConcept C9357733 @default.
- W4285179601 hasConceptScore W4285179601C11413529 @default.
- W4285179601 hasConceptScore W4285179601C119857082 @default.
- W4285179601 hasConceptScore W4285179601C124101348 @default.
- W4285179601 hasConceptScore W4285179601C154945302 @default.
- W4285179601 hasConceptScore W4285179601C33099171 @default.
- W4285179601 hasConceptScore W4285179601C41008148 @default.
- W4285179601 hasConceptScore W4285179601C58041806 @default.
- W4285179601 hasConceptScore W4285179601C9357733 @default.
- W4285179601 hasFunder F4320321001 @default.
- W4285179601 hasFunder F4320326182 @default.
- W4285179601 hasFunder F4320335777 @default.
- W4285179601 hasIssue "20" @default.
- W4285179601 hasLocation W42851796011 @default.
- W4285179601 hasOpenAccess W4285179601 @default.
- W4285179601 hasPrimaryLocation W42851796011 @default.
- W4285179601 hasRelatedWork W1973721774 @default.
- W4285179601 hasRelatedWork W2541565311 @default.
- W4285179601 hasRelatedWork W2574666645 @default.
- W4285179601 hasRelatedWork W2751555317 @default.
- W4285179601 hasRelatedWork W3028371478 @default.
- W4285179601 hasRelatedWork W3049453136 @default.
- W4285179601 hasRelatedWork W3179858851 @default.
- W4285179601 hasRelatedWork W4315783478 @default.
- W4285179601 hasRelatedWork W569810835 @default.
- W4285179601 hasRelatedWork W2112497756 @default.