Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285179976> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4285179976 endingPage "249" @default.
- W4285179976 startingPage "237" @default.
- W4285179976 abstract "Implementation of Artificial Intelligence in the paint spray process in the automobile industry can increase the efficiency of the paint spray process and reduce waste disposal. This project presents a semantic segmentation with a trained Convolutional Neural Network (CNN) implemented in the paint spray process as it can be used to predict and identify the target area that needs to be sprayed. A dataset contains different types of cars annotated with the car parts. A series CNN trained to classify the types of cars. There are 16 different semantic CNNs with different architecture and data stores trained to compare the result. The last step is to develop a system to identify the spray area. The result showed the accuracy of series CNN is 1, and the best way to train semantic CNN, which trained according to each type of car with the architecture of ResNet-50 with a data store consists of a more class. The validation result of ResNet-50_Type_01, ResNet-50_Type_02 and ResNet-50_Type_03 are 93.8162%, 90.5214% and 91.8023% which all have exceeded 85% and the Mean IoU of ResNet-50_Type_01, ResNet-50_Type_02 and ResNet-50_Type_03 are 0.8456, 0.8392 and 0.8263." @default.
- W4285179976 created "2022-07-14" @default.
- W4285179976 creator A5007987152 @default.
- W4285179976 creator A5030846349 @default.
- W4285179976 creator A5030925719 @default.
- W4285179976 creator A5054522972 @default.
- W4285179976 creator A5058317174 @default.
- W4285179976 creator A5065997186 @default.
- W4285179976 date "2022-01-01" @default.
- W4285179976 modified "2023-09-29" @default.
- W4285179976 title "Identify Target Area of Panel for Spraying Using Convolutional Neural Network" @default.
- W4285179976 cites W1536097292 @default.
- W4285179976 cites W2019940042 @default.
- W4285179976 cites W2128942651 @default.
- W4285179976 cites W2795061970 @default.
- W4285179976 cites W2800991998 @default.
- W4285179976 cites W2953759675 @default.
- W4285179976 cites W2955045814 @default.
- W4285179976 cites W2963671605 @default.
- W4285179976 cites W2963849010 @default.
- W4285179976 doi "https://doi.org/10.1007/978-981-19-2095-0_21" @default.
- W4285179976 hasPublicationYear "2022" @default.
- W4285179976 type Work @default.
- W4285179976 citedByCount "0" @default.
- W4285179976 crossrefType "book-chapter" @default.
- W4285179976 hasAuthorship W4285179976A5007987152 @default.
- W4285179976 hasAuthorship W4285179976A5030846349 @default.
- W4285179976 hasAuthorship W4285179976A5030925719 @default.
- W4285179976 hasAuthorship W4285179976A5054522972 @default.
- W4285179976 hasAuthorship W4285179976A5058317174 @default.
- W4285179976 hasAuthorship W4285179976A5065997186 @default.
- W4285179976 hasConcept C111919701 @default.
- W4285179976 hasConcept C153180895 @default.
- W4285179976 hasConcept C154945302 @default.
- W4285179976 hasConcept C2944601119 @default.
- W4285179976 hasConcept C41008148 @default.
- W4285179976 hasConcept C50644808 @default.
- W4285179976 hasConcept C81363708 @default.
- W4285179976 hasConcept C89600930 @default.
- W4285179976 hasConcept C98045186 @default.
- W4285179976 hasConceptScore W4285179976C111919701 @default.
- W4285179976 hasConceptScore W4285179976C153180895 @default.
- W4285179976 hasConceptScore W4285179976C154945302 @default.
- W4285179976 hasConceptScore W4285179976C2944601119 @default.
- W4285179976 hasConceptScore W4285179976C41008148 @default.
- W4285179976 hasConceptScore W4285179976C50644808 @default.
- W4285179976 hasConceptScore W4285179976C81363708 @default.
- W4285179976 hasConceptScore W4285179976C89600930 @default.
- W4285179976 hasConceptScore W4285179976C98045186 @default.
- W4285179976 hasLocation W42851799761 @default.
- W4285179976 hasOpenAccess W4285179976 @default.
- W4285179976 hasPrimaryLocation W42851799761 @default.
- W4285179976 hasRelatedWork W2175746458 @default.
- W4285179976 hasRelatedWork W2673946014 @default.
- W4285179976 hasRelatedWork W2732542196 @default.
- W4285179976 hasRelatedWork W2760085659 @default.
- W4285179976 hasRelatedWork W2769435486 @default.
- W4285179976 hasRelatedWork W3093612317 @default.
- W4285179976 hasRelatedWork W3102253946 @default.
- W4285179976 hasRelatedWork W4200528772 @default.
- W4285179976 hasRelatedWork W4293211451 @default.
- W4285179976 hasRelatedWork W4308191152 @default.
- W4285179976 isParatext "false" @default.
- W4285179976 isRetracted "false" @default.
- W4285179976 workType "book-chapter" @default.