Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285181805> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4285181805 abstract "Communication is a critical skill for humans. People who have been deprived from communicating through words like the rest of humans, usually use sign language. For sign language, the main signs features are the handshape, the location, the movement, the orientation and the non-manual component. The vast spread of mobile phones presents an opportunity for hearing-disabled people to engage more into their communities. Designing and implementing a novel Arabic Sign Language (ArSL) recognition system would significantly affect their quality of life. Deep learning models are usually heavy for mobile phones. The more layers a neural network has, the heavier it is. However, typical deep neural network necessitates a large number of layers to attain adequate classification performance. This project aims at addressing the Arabic Sign Language recognition problem and ensuring a trade-off between optimizing the classification performance and scaling down the architecture of the deep network to reduce the computational cost. Specifically, we adapted Efficient Network (EfficientNet) models and generated lightweight deep learning models to classify Arabic Sign Language gestures. Furthermore, a real dataset collected by many different signers to perform hand gestures for thirty different Arabic alphabets. Then, an appropriate performance metrics used in order to assess the classification outcomes obtained by the proposed lightweight models. Besides, preprocessing and data augmentation techniques were investigated to enhance the models generalization. The best results were obtained using the EfficientNet-Lite 0 architecture and the Label smooth as loss function. Our model achieved 94% and proved to be effective against background variations." @default.
- W4285181805 created "2022-07-14" @default.
- W4285181805 creator A5017213869 @default.
- W4285181805 creator A5029292323 @default.
- W4285181805 creator A5043048148 @default.
- W4285181805 date "2022-01-01" @default.
- W4285181805 modified "2023-09-27" @default.
- W4285181805 title "Arabic Sign Language Recognition using Lightweight CNN-based Architecture" @default.
- W4285181805 doi "https://doi.org/10.14569/ijacsa.2022.0130438" @default.
- W4285181805 hasPublicationYear "2022" @default.
- W4285181805 type Work @default.
- W4285181805 citedByCount "2" @default.
- W4285181805 countsByYear W42851818052022 @default.
- W4285181805 countsByYear W42851818052023 @default.
- W4285181805 crossrefType "journal-article" @default.
- W4285181805 hasAuthorship W4285181805A5017213869 @default.
- W4285181805 hasAuthorship W4285181805A5029292323 @default.
- W4285181805 hasAuthorship W4285181805A5043048148 @default.
- W4285181805 hasBestOaLocation W42851818051 @default.
- W4285181805 hasConcept C108583219 @default.
- W4285181805 hasConcept C137293760 @default.
- W4285181805 hasConcept C138885662 @default.
- W4285181805 hasConcept C154945302 @default.
- W4285181805 hasConcept C159437735 @default.
- W4285181805 hasConcept C204321447 @default.
- W4285181805 hasConcept C207347870 @default.
- W4285181805 hasConcept C2776737515 @default.
- W4285181805 hasConcept C28490314 @default.
- W4285181805 hasConcept C34736171 @default.
- W4285181805 hasConcept C41008148 @default.
- W4285181805 hasConcept C41895202 @default.
- W4285181805 hasConcept C50644808 @default.
- W4285181805 hasConcept C522192633 @default.
- W4285181805 hasConceptScore W4285181805C108583219 @default.
- W4285181805 hasConceptScore W4285181805C137293760 @default.
- W4285181805 hasConceptScore W4285181805C138885662 @default.
- W4285181805 hasConceptScore W4285181805C154945302 @default.
- W4285181805 hasConceptScore W4285181805C159437735 @default.
- W4285181805 hasConceptScore W4285181805C204321447 @default.
- W4285181805 hasConceptScore W4285181805C207347870 @default.
- W4285181805 hasConceptScore W4285181805C2776737515 @default.
- W4285181805 hasConceptScore W4285181805C28490314 @default.
- W4285181805 hasConceptScore W4285181805C34736171 @default.
- W4285181805 hasConceptScore W4285181805C41008148 @default.
- W4285181805 hasConceptScore W4285181805C41895202 @default.
- W4285181805 hasConceptScore W4285181805C50644808 @default.
- W4285181805 hasConceptScore W4285181805C522192633 @default.
- W4285181805 hasIssue "4" @default.
- W4285181805 hasLocation W42851818051 @default.
- W4285181805 hasOpenAccess W4285181805 @default.
- W4285181805 hasPrimaryLocation W42851818051 @default.
- W4285181805 hasRelatedWork W2000089119 @default.
- W4285181805 hasRelatedWork W2907599639 @default.
- W4285181805 hasRelatedWork W3106327734 @default.
- W4285181805 hasRelatedWork W3126290060 @default.
- W4285181805 hasRelatedWork W3205017362 @default.
- W4285181805 hasRelatedWork W389677024 @default.
- W4285181805 hasRelatedWork W4281801625 @default.
- W4285181805 hasRelatedWork W4313444768 @default.
- W4285181805 hasRelatedWork W4367692974 @default.
- W4285181805 hasRelatedWork W4380047643 @default.
- W4285181805 hasVolume "13" @default.
- W4285181805 isParatext "false" @default.
- W4285181805 isRetracted "false" @default.
- W4285181805 workType "article" @default.