Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285182929> ?p ?o ?g. }
- W4285182929 endingPage "2291" @default.
- W4285182929 startingPage "2275" @default.
- W4285182929 abstract "Recently medical image classification plays a vital role in medical image retrieval and computer-aided diagnosis system. Despite deep learning has proved to be superior to previous approaches that depend on handcrafted features; it remains difficult to implement because of the high intra-class variance and inter-class similarity generated by the wide range of imaging modalities and clinical diseases. The Internet of Things (IoT) in healthcare systems is quickly becoming a viable alternative for delivering high-quality medical treatment in today’s e-healthcare systems. In recent years, the Internet of Things (IoT) has been identified as one of the most interesting research subjects in the field of health care, notably in the field of medical image processing. For medical picture analysis, researchers used a combination of machine and deep learning techniques as well as artificial intelligence. These newly discovered approaches are employed to determine diseases, which may aid medical specialists in disease diagnosis at an earlier stage, giving precise, reliable, efficient, and timely results, and lowering death rates. Based on this insight, a novel optimal IoT-based improved deep learning model named optimization-driven deep belief neural network (ODBNN) is proposed in this article. In context, primarily image quality enhancement procedures like noise removal and contrast normalization are employed. Then the pre-processed image is subjected to feature extraction techniques in which intensity histogram, an average pixel of RGB channels, first-order statistics, Grey Level Co-Occurrence Matrix, Discrete Wavelet Transform, and Local Binary Pattern measures are extracted. After extracting these sets of features, the May Fly optimization technique is adopted to select the most relevant features. The selected features are fed into the proposed classification algorithm in terms of classifying similar input images into similar classes. The proposed model is evaluated in terms of accuracy, precision, recall, and f-measure. The investigation evident the performance of incorporating optimization techniques for medical image classification is better than conventional techniques." @default.
- W4285182929 created "2022-07-14" @default.
- W4285182929 creator A5014648216 @default.
- W4285182929 creator A5019729439 @default.
- W4285182929 creator A5035382990 @default.
- W4285182929 creator A5042675693 @default.
- W4285182929 creator A5053107720 @default.
- W4285182929 date "2022-01-01" @default.
- W4285182929 modified "2023-10-18" @default.
- W4285182929 title "Optimal IoT Based Improved Deep Learning Model for Medical Image Classification" @default.
- W4285182929 cites W1494636597 @default.
- W4285182929 cites W1975705910 @default.
- W4285182929 cites W1975815454 @default.
- W4285182929 cites W2117510288 @default.
- W4285182929 cites W2148002238 @default.
- W4285182929 cites W2539508357 @default.
- W4285182929 cites W2559785631 @default.
- W4285182929 cites W2571067114 @default.
- W4285182929 cites W2618587140 @default.
- W4285182929 cites W2772418032 @default.
- W4285182929 cites W2808205569 @default.
- W4285182929 cites W2890741060 @default.
- W4285182929 cites W2907632336 @default.
- W4285182929 cites W2907770500 @default.
- W4285182929 cites W2908899831 @default.
- W4285182929 cites W2916845318 @default.
- W4285182929 cites W2922396237 @default.
- W4285182929 cites W2972198316 @default.
- W4285182929 cites W2986507176 @default.
- W4285182929 cites W2991232928 @default.
- W4285182929 cites W2991407254 @default.
- W4285182929 cites W2995942064 @default.
- W4285182929 cites W3010770988 @default.
- W4285182929 cites W3029517552 @default.
- W4285182929 cites W3098394437 @default.
- W4285182929 cites W3188404242 @default.
- W4285182929 doi "https://doi.org/10.32604/cmc.2022.028560" @default.
- W4285182929 hasPublicationYear "2022" @default.
- W4285182929 type Work @default.
- W4285182929 citedByCount "0" @default.
- W4285182929 crossrefType "journal-article" @default.
- W4285182929 hasAuthorship W4285182929A5014648216 @default.
- W4285182929 hasAuthorship W4285182929A5019729439 @default.
- W4285182929 hasAuthorship W4285182929A5035382990 @default.
- W4285182929 hasAuthorship W4285182929A5042675693 @default.
- W4285182929 hasAuthorship W4285182929A5053107720 @default.
- W4285182929 hasBestOaLocation W42851829291 @default.
- W4285182929 hasConcept C108583219 @default.
- W4285182929 hasConcept C115961682 @default.
- W4285182929 hasConcept C119857082 @default.
- W4285182929 hasConcept C124101348 @default.
- W4285182929 hasConcept C136886441 @default.
- W4285182929 hasConcept C142724271 @default.
- W4285182929 hasConcept C144024400 @default.
- W4285182929 hasConcept C151730666 @default.
- W4285182929 hasConcept C153180895 @default.
- W4285182929 hasConcept C154945302 @default.
- W4285182929 hasConcept C160633673 @default.
- W4285182929 hasConcept C19165224 @default.
- W4285182929 hasConcept C202444582 @default.
- W4285182929 hasConcept C2779343474 @default.
- W4285182929 hasConcept C33923547 @default.
- W4285182929 hasConcept C41008148 @default.
- W4285182929 hasConcept C52622490 @default.
- W4285182929 hasConcept C534262118 @default.
- W4285182929 hasConcept C53533937 @default.
- W4285182929 hasConcept C71924100 @default.
- W4285182929 hasConcept C86803240 @default.
- W4285182929 hasConcept C87335442 @default.
- W4285182929 hasConcept C9652623 @default.
- W4285182929 hasConceptScore W4285182929C108583219 @default.
- W4285182929 hasConceptScore W4285182929C115961682 @default.
- W4285182929 hasConceptScore W4285182929C119857082 @default.
- W4285182929 hasConceptScore W4285182929C124101348 @default.
- W4285182929 hasConceptScore W4285182929C136886441 @default.
- W4285182929 hasConceptScore W4285182929C142724271 @default.
- W4285182929 hasConceptScore W4285182929C144024400 @default.
- W4285182929 hasConceptScore W4285182929C151730666 @default.
- W4285182929 hasConceptScore W4285182929C153180895 @default.
- W4285182929 hasConceptScore W4285182929C154945302 @default.
- W4285182929 hasConceptScore W4285182929C160633673 @default.
- W4285182929 hasConceptScore W4285182929C19165224 @default.
- W4285182929 hasConceptScore W4285182929C202444582 @default.
- W4285182929 hasConceptScore W4285182929C2779343474 @default.
- W4285182929 hasConceptScore W4285182929C33923547 @default.
- W4285182929 hasConceptScore W4285182929C41008148 @default.
- W4285182929 hasConceptScore W4285182929C52622490 @default.
- W4285182929 hasConceptScore W4285182929C534262118 @default.
- W4285182929 hasConceptScore W4285182929C53533937 @default.
- W4285182929 hasConceptScore W4285182929C71924100 @default.
- W4285182929 hasConceptScore W4285182929C86803240 @default.
- W4285182929 hasConceptScore W4285182929C87335442 @default.
- W4285182929 hasConceptScore W4285182929C9652623 @default.
- W4285182929 hasIssue "2" @default.
- W4285182929 hasLocation W42851829291 @default.
- W4285182929 hasOpenAccess W4285182929 @default.
- W4285182929 hasPrimaryLocation W42851829291 @default.
- W4285182929 hasRelatedWork W2005771019 @default.