Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285183754> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4285183754 endingPage "21072" @default.
- W4285183754 startingPage "21064" @default.
- W4285183754 abstract "The combustible and noxious gases are among the prominent issues affecting the life and the mining operations of underground coal mines (UCMs). Commonly adopted hazard monitoring methodologies in UCM are fuzzy, rule-based systems, statistical methods, and other expert systems, but these models are not reliable for highly complex and nonlinear systems. The neural network’s ability to learn and create nonlinear relationships is beneficial to making hazard prediction models. Especially, convolutional neural networks (CNNs) auto feature extraction capabilities to make it more suitable for the task. But, UCM’s harsh and crucial environment may result in sensor malfunctioning and faults, giving rise to data uncertainty. Like other data-driven models, data uncertainty significantly affects CNN’s performance. This study involves designing an effective and reliable gas hazard monitoring system using a hybrid of Dempster–Shafer evidence theory (DSET)-based filter and one-dimensional CNN (1DCNN) classifier. The novelty of this study is the integration of DSET and 1DCNN to predict the UCM hazard more reliably, even in malfunctioning node scenarios. Inherent usage limitations on traditional communication techniques restrict the application of cloud-based machine learning (ML) methods and this study use novel edge implementation of the filter and the classifier using edge ML (EML) technology. The proposed model’s hazard classification accuracy is 99.6%, even in the faulty node scenarios, where the traditional approaches fail." @default.
- W4285183754 created "2022-07-14" @default.
- W4285183754 creator A5040704829 @default.
- W4285183754 creator A5088970347 @default.
- W4285183754 date "2022-11-01" @default.
- W4285183754 modified "2023-10-17" @default.
- W4285183754 title "Multisensor Data-Fusion-Based Gas Hazard Prediction Using DSET and 1DCNN for Underground Longwall Coal Mine" @default.
- W4285183754 doi "https://doi.org/10.1109/jiot.2022.3175724" @default.
- W4285183754 hasPublicationYear "2022" @default.
- W4285183754 type Work @default.
- W4285183754 citedByCount "4" @default.
- W4285183754 countsByYear W42851837542023 @default.
- W4285183754 crossrefType "journal-article" @default.
- W4285183754 hasAuthorship W4285183754A5040704829 @default.
- W4285183754 hasAuthorship W4285183754A5088970347 @default.
- W4285183754 hasConcept C108615695 @default.
- W4285183754 hasConcept C119857082 @default.
- W4285183754 hasConcept C124101348 @default.
- W4285183754 hasConcept C127413603 @default.
- W4285183754 hasConcept C154945302 @default.
- W4285183754 hasConcept C178790620 @default.
- W4285183754 hasConcept C185592680 @default.
- W4285183754 hasConcept C33954974 @default.
- W4285183754 hasConcept C41008148 @default.
- W4285183754 hasConcept C49261128 @default.
- W4285183754 hasConcept C50644808 @default.
- W4285183754 hasConcept C518851703 @default.
- W4285183754 hasConcept C52622490 @default.
- W4285183754 hasConcept C548081761 @default.
- W4285183754 hasConcept C81363708 @default.
- W4285183754 hasConcept C95623464 @default.
- W4285183754 hasConceptScore W4285183754C108615695 @default.
- W4285183754 hasConceptScore W4285183754C119857082 @default.
- W4285183754 hasConceptScore W4285183754C124101348 @default.
- W4285183754 hasConceptScore W4285183754C127413603 @default.
- W4285183754 hasConceptScore W4285183754C154945302 @default.
- W4285183754 hasConceptScore W4285183754C178790620 @default.
- W4285183754 hasConceptScore W4285183754C185592680 @default.
- W4285183754 hasConceptScore W4285183754C33954974 @default.
- W4285183754 hasConceptScore W4285183754C41008148 @default.
- W4285183754 hasConceptScore W4285183754C49261128 @default.
- W4285183754 hasConceptScore W4285183754C50644808 @default.
- W4285183754 hasConceptScore W4285183754C518851703 @default.
- W4285183754 hasConceptScore W4285183754C52622490 @default.
- W4285183754 hasConceptScore W4285183754C548081761 @default.
- W4285183754 hasConceptScore W4285183754C81363708 @default.
- W4285183754 hasConceptScore W4285183754C95623464 @default.
- W4285183754 hasIssue "21" @default.
- W4285183754 hasLocation W42851837541 @default.
- W4285183754 hasOpenAccess W4285183754 @default.
- W4285183754 hasPrimaryLocation W42851837541 @default.
- W4285183754 hasRelatedWork W2322283169 @default.
- W4285183754 hasRelatedWork W2350914471 @default.
- W4285183754 hasRelatedWork W2361854395 @default.
- W4285183754 hasRelatedWork W2372497137 @default.
- W4285183754 hasRelatedWork W2377388210 @default.
- W4285183754 hasRelatedWork W2381456208 @default.
- W4285183754 hasRelatedWork W2382773478 @default.
- W4285183754 hasRelatedWork W2606426007 @default.
- W4285183754 hasRelatedWork W2948680674 @default.
- W4285183754 hasRelatedWork W4233390204 @default.
- W4285183754 hasVolume "9" @default.
- W4285183754 isParatext "false" @default.
- W4285183754 isRetracted "false" @default.
- W4285183754 workType "article" @default.