Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285185520> ?p ?o ?g. }
- W4285185520 endingPage "64" @default.
- W4285185520 startingPage "43" @default.
- W4285185520 abstract "DNA sequencing deals with figuring out the order of arrangement of the bases in the DNA. These bases are the building blocks of DNA molecules and their arrangement mostly determines the genetic information carried within a DNA segment, therefore sequencing becomes a very important aspect in the field of genomics. Now it becomes ever more important to optimize this process of sequencing and analysis and the field of deep learning has a lot to offer. Autoencoders are artificial neural networks which are trained in an unsupervised manner to obtain feature representation or dimensionality reduction. Now as clustering is difficult to perform for data with large dimensions, autoencoders can be used to reduce the dimension of data by associating each gene cluster with an autoencoder. Genetic algorithms are algorithms which are based on Darwin’s law of evolution and provide a better alternative to traditional clustering algorithms which have been found to have various drawbacks when implemented for genetic data. Drug repositioning is the examination of existing drugs on new disease targets and pharmacogenomics, looking to predict the target’s response to a drug. Deep learning acts as a powerful tool for repositioning drugs by allowing us to perform robust predictions and provide deep insights to drug-disease combinations. This chapter aims to provide the reader with various deep learning models and analysis algorithms which have been employed in some or the other forms for studying gene characteristics and gene development or have the potential to form the basis for ground breaking research for the same." @default.
- W4285185520 created "2022-07-14" @default.
- W4285185520 creator A5000171269 @default.
- W4285185520 creator A5002077403 @default.
- W4285185520 creator A5017610833 @default.
- W4285185520 creator A5048309153 @default.
- W4285185520 date "2022-01-01" @default.
- W4285185520 modified "2023-09-29" @default.
- W4285185520 title "A Study of Gene Characteristics and Their Applications Using Deep Learning" @default.
- W4285185520 cites W1544414891 @default.
- W4285185520 cites W2025768430 @default.
- W4285185520 cites W2078888611 @default.
- W4285185520 cites W2103868202 @default.
- W4285185520 cites W2537362824 @default.
- W4285185520 cites W2584305206 @default.
- W4285185520 cites W2591130492 @default.
- W4285185520 cites W2754987240 @default.
- W4285185520 cites W2787037604 @default.
- W4285185520 cites W2887766329 @default.
- W4285185520 cites W2895547114 @default.
- W4285185520 cites W2929664871 @default.
- W4285185520 cites W2946099214 @default.
- W4285185520 cites W2949279762 @default.
- W4285185520 cites W2952416588 @default.
- W4285185520 cites W2956257472 @default.
- W4285185520 cites W2982905073 @default.
- W4285185520 cites W2992522882 @default.
- W4285185520 cites W3005970824 @default.
- W4285185520 cites W3008594856 @default.
- W4285185520 cites W3008737806 @default.
- W4285185520 cites W3040360568 @default.
- W4285185520 cites W3081139882 @default.
- W4285185520 cites W3083365353 @default.
- W4285185520 cites W3087323891 @default.
- W4285185520 cites W3112703609 @default.
- W4285185520 cites W3128524549 @default.
- W4285185520 cites W3132799936 @default.
- W4285185520 cites W3176308329 @default.
- W4285185520 cites W3195915406 @default.
- W4285185520 cites W3200034418 @default.
- W4285185520 cites W82771173 @default.
- W4285185520 doi "https://doi.org/10.1007/978-981-16-9158-4_4" @default.
- W4285185520 hasPublicationYear "2022" @default.
- W4285185520 type Work @default.
- W4285185520 citedByCount "0" @default.
- W4285185520 crossrefType "book-chapter" @default.
- W4285185520 hasAuthorship W4285185520A5000171269 @default.
- W4285185520 hasAuthorship W4285185520A5002077403 @default.
- W4285185520 hasAuthorship W4285185520A5017610833 @default.
- W4285185520 hasAuthorship W4285185520A5048309153 @default.
- W4285185520 hasConcept C101738243 @default.
- W4285185520 hasConcept C108583219 @default.
- W4285185520 hasConcept C111030470 @default.
- W4285185520 hasConcept C111919701 @default.
- W4285185520 hasConcept C119857082 @default.
- W4285185520 hasConcept C124101348 @default.
- W4285185520 hasConcept C154945302 @default.
- W4285185520 hasConcept C17744445 @default.
- W4285185520 hasConcept C199539241 @default.
- W4285185520 hasConcept C202444582 @default.
- W4285185520 hasConcept C2776359362 @default.
- W4285185520 hasConcept C33923547 @default.
- W4285185520 hasConcept C41008148 @default.
- W4285185520 hasConcept C59404180 @default.
- W4285185520 hasConcept C70518039 @default.
- W4285185520 hasConcept C73555534 @default.
- W4285185520 hasConcept C94625758 @default.
- W4285185520 hasConcept C9652623 @default.
- W4285185520 hasConcept C98045186 @default.
- W4285185520 hasConceptScore W4285185520C101738243 @default.
- W4285185520 hasConceptScore W4285185520C108583219 @default.
- W4285185520 hasConceptScore W4285185520C111030470 @default.
- W4285185520 hasConceptScore W4285185520C111919701 @default.
- W4285185520 hasConceptScore W4285185520C119857082 @default.
- W4285185520 hasConceptScore W4285185520C124101348 @default.
- W4285185520 hasConceptScore W4285185520C154945302 @default.
- W4285185520 hasConceptScore W4285185520C17744445 @default.
- W4285185520 hasConceptScore W4285185520C199539241 @default.
- W4285185520 hasConceptScore W4285185520C202444582 @default.
- W4285185520 hasConceptScore W4285185520C2776359362 @default.
- W4285185520 hasConceptScore W4285185520C33923547 @default.
- W4285185520 hasConceptScore W4285185520C41008148 @default.
- W4285185520 hasConceptScore W4285185520C59404180 @default.
- W4285185520 hasConceptScore W4285185520C70518039 @default.
- W4285185520 hasConceptScore W4285185520C73555534 @default.
- W4285185520 hasConceptScore W4285185520C94625758 @default.
- W4285185520 hasConceptScore W4285185520C9652623 @default.
- W4285185520 hasConceptScore W4285185520C98045186 @default.
- W4285185520 hasLocation W42851855201 @default.
- W4285185520 hasOpenAccess W4285185520 @default.
- W4285185520 hasPrimaryLocation W42851855201 @default.
- W4285185520 hasRelatedWork W2538028360 @default.
- W4285185520 hasRelatedWork W2784313445 @default.
- W4285185520 hasRelatedWork W2922457425 @default.
- W4285185520 hasRelatedWork W3044458868 @default.
- W4285185520 hasRelatedWork W3165463024 @default.
- W4285185520 hasRelatedWork W4213225422 @default.
- W4285185520 hasRelatedWork W4250304930 @default.