Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285186462> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4285186462 endingPage "226" @default.
- W4285186462 startingPage "219" @default.
- W4285186462 abstract "Detection and classification of cancerous tissue from histopathologic images is quite a challenging task for pathologists and computer assisted medical diagnosis systems because of the complexity of the histopathology image. For a good diagnostic system, feature extraction from the medical images plays a crucial role for better classification of images. Using inappropriate or redundant features leads to poor classification results because classification algorithm learns a lot of unimportant information from the images. We propose hybrid feature extractor using different feature extraction algorithms that can extract various types of features from histopathological image. For this study, feature fused Convolution Neural Network, Gray Level Cooccurrence Matrix, and Local Binary Pattern algorithms are used. The texture and deep features obtained from these methods are used as input vector to classifiers: Support Vector Machine, KNearest Neighbor, Naïve Bayes and Boosted Tree. Prediction results of these classifiers are combined using soft majority voting algorithm to predict final output. Proposed method achieved an accuracy of 98.71%, which is quite high as compared to previous similar research works. Proposed method was capable of identifying most of cancerous histopathology images. The combination of deep and textural features can be potentially used for creating computer assisted medical imaging diagnosis system that can detect cancer from histopathology images timely and accurately." @default.
- W4285186462 created "2022-07-14" @default.
- W4285186462 creator A5018689034 @default.
- W4285186462 creator A5081373816 @default.
- W4285186462 creator A5091259960 @default.
- W4285186462 date "2022-01-01" @default.
- W4285186462 modified "2023-10-01" @default.
- W4285186462 title "Hybrid Feature Extraction Based Ensemble Classification Model to Diagnose Oral Carcinoma Using Histopathological Images" @default.
- W4285186462 doi "https://doi.org/10.37398/jsr.2022.660327" @default.
- W4285186462 hasPublicationYear "2022" @default.
- W4285186462 type Work @default.
- W4285186462 citedByCount "0" @default.
- W4285186462 crossrefType "journal-article" @default.
- W4285186462 hasAuthorship W4285186462A5018689034 @default.
- W4285186462 hasAuthorship W4285186462A5081373816 @default.
- W4285186462 hasAuthorship W4285186462A5091259960 @default.
- W4285186462 hasBestOaLocation W42851864621 @default.
- W4285186462 hasConcept C115961682 @default.
- W4285186462 hasConcept C12267149 @default.
- W4285186462 hasConcept C138885662 @default.
- W4285186462 hasConcept C153180895 @default.
- W4285186462 hasConcept C154945302 @default.
- W4285186462 hasConcept C2776401178 @default.
- W4285186462 hasConcept C41008148 @default.
- W4285186462 hasConcept C41895202 @default.
- W4285186462 hasConcept C52001869 @default.
- W4285186462 hasConcept C52622490 @default.
- W4285186462 hasConcept C53533937 @default.
- W4285186462 hasConcept C81363708 @default.
- W4285186462 hasConcept C83665646 @default.
- W4285186462 hasConcept C87335442 @default.
- W4285186462 hasConceptScore W4285186462C115961682 @default.
- W4285186462 hasConceptScore W4285186462C12267149 @default.
- W4285186462 hasConceptScore W4285186462C138885662 @default.
- W4285186462 hasConceptScore W4285186462C153180895 @default.
- W4285186462 hasConceptScore W4285186462C154945302 @default.
- W4285186462 hasConceptScore W4285186462C2776401178 @default.
- W4285186462 hasConceptScore W4285186462C41008148 @default.
- W4285186462 hasConceptScore W4285186462C41895202 @default.
- W4285186462 hasConceptScore W4285186462C52001869 @default.
- W4285186462 hasConceptScore W4285186462C52622490 @default.
- W4285186462 hasConceptScore W4285186462C53533937 @default.
- W4285186462 hasConceptScore W4285186462C81363708 @default.
- W4285186462 hasConceptScore W4285186462C83665646 @default.
- W4285186462 hasConceptScore W4285186462C87335442 @default.
- W4285186462 hasIssue "03" @default.
- W4285186462 hasLocation W42851864621 @default.
- W4285186462 hasOpenAccess W4285186462 @default.
- W4285186462 hasPrimaryLocation W42851864621 @default.
- W4285186462 hasRelatedWork W2005771019 @default.
- W4285186462 hasRelatedWork W2207021851 @default.
- W4285186462 hasRelatedWork W2336974148 @default.
- W4285186462 hasRelatedWork W2486556835 @default.
- W4285186462 hasRelatedWork W2772780115 @default.
- W4285186462 hasRelatedWork W2996933976 @default.
- W4285186462 hasRelatedWork W3003836766 @default.
- W4285186462 hasRelatedWork W3021364800 @default.
- W4285186462 hasRelatedWork W3165453100 @default.
- W4285186462 hasRelatedWork W2345184372 @default.
- W4285186462 hasVolume "66" @default.
- W4285186462 isParatext "false" @default.
- W4285186462 isRetracted "false" @default.
- W4285186462 workType "article" @default.