Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285186923> ?p ?o ?g. }
- W4285186923 endingPage "450" @default.
- W4285186923 startingPage "439" @default.
- W4285186923 abstract "Face anti-spoofing (FAS) is important to secure face recognition systems. Deep learning has obtained great success in this area, however, most existing approaches fail to consider comprehensive relation-aware local representations of live and spoof faces. To address this issue, we propose a Transformer-based Face Anti-Spoofing (TransFAS) model to explore comprehensive facial parts for FAS. Besides the multi-head self-attention which explores relations among local patches in the same layer, we propose cross-layer relation-aware attentions (CRA) to adaptively integrate local patches from different layers. Furthermore, to effectively fuse hierarchical features, we explore the best hierarchical feature fusion (HFF) structure, which can capture the complementary information between low-level artifacts and high-level semantic features for the spoofing patterns. With these novel modules, TransFAS not only improves the generalization capability of the classical vision transformer, but also achieves SOTA performance on multiple benchmarks, demonstrating the superiority of the transformer-based model for FAS." @default.
- W4285186923 created "2022-07-14" @default.
- W4285186923 creator A5012400380 @default.
- W4285186923 creator A5025452586 @default.
- W4285186923 creator A5080221133 @default.
- W4285186923 creator A5085022758 @default.
- W4285186923 date "2022-07-01" @default.
- W4285186923 modified "2023-10-01" @default.
- W4285186923 title "Face Anti-Spoofing Using Transformers With Relation-Aware Mechanism" @default.
- W4285186923 cites W1982209341 @default.
- W4285186923 cites W2003092530 @default.
- W4285186923 cites W2009451935 @default.
- W4285186923 cites W2042883034 @default.
- W4285186923 cites W2063661788 @default.
- W4285186923 cites W2095252718 @default.
- W4285186923 cites W2194775991 @default.
- W4285186923 cites W2409050142 @default.
- W4285186923 cites W2418633638 @default.
- W4285186923 cites W2551249768 @default.
- W4285186923 cites W2565639579 @default.
- W4285186923 cites W2607927535 @default.
- W4285186923 cites W2617869948 @default.
- W4285186923 cites W2728977829 @default.
- W4285186923 cites W2738874969 @default.
- W4285186923 cites W2787613668 @default.
- W4285186923 cites W2790392345 @default.
- W4285186923 cites W2798658180 @default.
- W4285186923 cites W2803272491 @default.
- W4285186923 cites W2941396125 @default.
- W4285186923 cites W2952476201 @default.
- W4285186923 cites W2956066883 @default.
- W4285186923 cites W2963342110 @default.
- W4285186923 cites W2963446712 @default.
- W4285186923 cites W2963656031 @default.
- W4285186923 cites W2963857746 @default.
- W4285186923 cites W2964003763 @default.
- W4285186923 cites W2964245886 @default.
- W4285186923 cites W2971810730 @default.
- W4285186923 cites W2992296732 @default.
- W4285186923 cites W2998163473 @default.
- W4285186923 cites W2998570087 @default.
- W4285186923 cites W3005726865 @default.
- W4285186923 cites W3005973417 @default.
- W4285186923 cites W3006377070 @default.
- W4285186923 cites W3015313050 @default.
- W4285186923 cites W3034594921 @default.
- W4285186923 cites W3035263140 @default.
- W4285186923 cites W3035436173 @default.
- W4285186923 cites W3035459165 @default.
- W4285186923 cites W3045209015 @default.
- W4285186923 cites W3046357449 @default.
- W4285186923 cites W3086519949 @default.
- W4285186923 cites W3094861582 @default.
- W4285186923 cites W3096672325 @default.
- W4285186923 cites W3099271666 @default.
- W4285186923 cites W3101998545 @default.
- W4285186923 cites W3108722472 @default.
- W4285186923 cites W3109432287 @default.
- W4285186923 cites W3116054336 @default.
- W4285186923 cites W3120331994 @default.
- W4285186923 cites W3121614789 @default.
- W4285186923 cites W3132882818 @default.
- W4285186923 cites W3138047537 @default.
- W4285186923 cites W3138516171 @default.
- W4285186923 cites W3159891475 @default.
- W4285186923 cites W3170841864 @default.
- W4285186923 cites W3174133171 @default.
- W4285186923 cites W3175196926 @default.
- W4285186923 cites W3176196997 @default.
- W4285186923 cites W3183943918 @default.
- W4285186923 cites W3188354902 @default.
- W4285186923 cites W3191040240 @default.
- W4285186923 cites W3195656755 @default.
- W4285186923 cites W4205302377 @default.
- W4285186923 doi "https://doi.org/10.1109/tbiom.2022.3184500" @default.
- W4285186923 hasPublicationYear "2022" @default.
- W4285186923 type Work @default.
- W4285186923 citedByCount "8" @default.
- W4285186923 countsByYear W42851869232023 @default.
- W4285186923 crossrefType "journal-article" @default.
- W4285186923 hasAuthorship W4285186923A5012400380 @default.
- W4285186923 hasAuthorship W4285186923A5025452586 @default.
- W4285186923 hasAuthorship W4285186923A5080221133 @default.
- W4285186923 hasAuthorship W4285186923A5085022758 @default.
- W4285186923 hasConcept C119599485 @default.
- W4285186923 hasConcept C119857082 @default.
- W4285186923 hasConcept C124101348 @default.
- W4285186923 hasConcept C127413603 @default.
- W4285186923 hasConcept C141353440 @default.
- W4285186923 hasConcept C144024400 @default.
- W4285186923 hasConcept C153180895 @default.
- W4285186923 hasConcept C154945302 @default.
- W4285186923 hasConcept C165801399 @default.
- W4285186923 hasConcept C167900197 @default.
- W4285186923 hasConcept C25343380 @default.
- W4285186923 hasConcept C2779304628 @default.
- W4285186923 hasConcept C31972630 @default.
- W4285186923 hasConcept C36289849 @default.