Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285191285> ?p ?o ?g. }
- W4285191285 endingPage "42" @default.
- W4285191285 startingPage "31" @default.
- W4285191285 abstract "This paper aims to review the state-of-the-art statistical relational learning models (SRL) in genomics. SRL deals with machine learning and data mining in relational domains where observations may be missing, partially observed, and noisy. This chapter introduces a background overview of various models, including probabilistic graphical models, Bayesian networks, dependency networks, Markov networks, first-order logic, and probabilistic inductive logic programming. This chapter also discusses the various statistical relational learning approaches, including probabilistic relational models, stochastic logic programs, Bayesian logic programs, relational dependency networks, relational Markov networks, and Markov logic networks. Finally, the last part of the paper focuses on the practical application of statistical relational learning techniques in genomics. The chapter concludes with a discussion on the limitations of current methods." @default.
- W4285191285 created "2022-07-14" @default.
- W4285191285 creator A5031673704 @default.
- W4285191285 creator A5087304157 @default.
- W4285191285 date "2022-01-01" @default.
- W4285191285 modified "2023-10-01" @default.
- W4285191285 title "Statistical Relational Learning for Genomics Applications: A State-of-the-Art Review" @default.
- W4285191285 cites W1494192115 @default.
- W4285191285 cites W1505191356 @default.
- W4285191285 cites W1508045687 @default.
- W4285191285 cites W1529533208 @default.
- W4285191285 cites W186521003 @default.
- W4285191285 cites W1902387477 @default.
- W4285191285 cites W1965786803 @default.
- W4285191285 cites W1971883645 @default.
- W4285191285 cites W2002826893 @default.
- W4285191285 cites W2004912450 @default.
- W4285191285 cites W2035372089 @default.
- W4285191285 cites W2041479715 @default.
- W4285191285 cites W2058481220 @default.
- W4285191285 cites W2062686286 @default.
- W4285191285 cites W2078632509 @default.
- W4285191285 cites W2083885588 @default.
- W4285191285 cites W2096154635 @default.
- W4285191285 cites W2106122512 @default.
- W4285191285 cites W2129712609 @default.
- W4285191285 cites W2167769381 @default.
- W4285191285 cites W2530870239 @default.
- W4285191285 cites W2612009624 @default.
- W4285191285 cites W2738620510 @default.
- W4285191285 cites W2771995562 @default.
- W4285191285 cites W2775300540 @default.
- W4285191285 cites W2789652838 @default.
- W4285191285 cites W2793303269 @default.
- W4285191285 cites W2796108297 @default.
- W4285191285 cites W2801459027 @default.
- W4285191285 cites W2802200907 @default.
- W4285191285 cites W2802441085 @default.
- W4285191285 cites W2909551928 @default.
- W4285191285 cites W2915216698 @default.
- W4285191285 cites W2925404235 @default.
- W4285191285 cites W2935703330 @default.
- W4285191285 cites W2960577066 @default.
- W4285191285 cites W2984336612 @default.
- W4285191285 cites W2990290777 @default.
- W4285191285 cites W2998075897 @default.
- W4285191285 cites W3022503451 @default.
- W4285191285 cites W3033343774 @default.
- W4285191285 cites W3089611792 @default.
- W4285191285 cites W3093911808 @default.
- W4285191285 cites W3099525536 @default.
- W4285191285 cites W3103573813 @default.
- W4285191285 cites W3134013259 @default.
- W4285191285 cites W3159741945 @default.
- W4285191285 cites W4205371654 @default.
- W4285191285 cites W4229758624 @default.
- W4285191285 cites W2141259402 @default.
- W4285191285 cites W4300602297 @default.
- W4285191285 doi "https://doi.org/10.1007/978-981-16-9158-4_3" @default.
- W4285191285 hasPublicationYear "2022" @default.
- W4285191285 type Work @default.
- W4285191285 citedByCount "0" @default.
- W4285191285 crossrefType "book-chapter" @default.
- W4285191285 hasAuthorship W4285191285A5031673704 @default.
- W4285191285 hasAuthorship W4285191285A5087304157 @default.
- W4285191285 hasConcept C119857082 @default.
- W4285191285 hasConcept C124101348 @default.
- W4285191285 hasConcept C154945302 @default.
- W4285191285 hasConcept C155846161 @default.
- W4285191285 hasConcept C177877439 @default.
- W4285191285 hasConcept C19768560 @default.
- W4285191285 hasConcept C2779382394 @default.
- W4285191285 hasConcept C33724603 @default.
- W4285191285 hasConcept C40207289 @default.
- W4285191285 hasConcept C41008148 @default.
- W4285191285 hasConcept C49937458 @default.
- W4285191285 hasConcept C5655090 @default.
- W4285191285 hasConcept C80444323 @default.
- W4285191285 hasConcept C98763669 @default.
- W4285191285 hasConceptScore W4285191285C119857082 @default.
- W4285191285 hasConceptScore W4285191285C124101348 @default.
- W4285191285 hasConceptScore W4285191285C154945302 @default.
- W4285191285 hasConceptScore W4285191285C155846161 @default.
- W4285191285 hasConceptScore W4285191285C177877439 @default.
- W4285191285 hasConceptScore W4285191285C19768560 @default.
- W4285191285 hasConceptScore W4285191285C2779382394 @default.
- W4285191285 hasConceptScore W4285191285C33724603 @default.
- W4285191285 hasConceptScore W4285191285C40207289 @default.
- W4285191285 hasConceptScore W4285191285C41008148 @default.
- W4285191285 hasConceptScore W4285191285C49937458 @default.
- W4285191285 hasConceptScore W4285191285C5655090 @default.
- W4285191285 hasConceptScore W4285191285C80444323 @default.
- W4285191285 hasConceptScore W4285191285C98763669 @default.
- W4285191285 hasLocation W42851912851 @default.
- W4285191285 hasOpenAccess W4285191285 @default.
- W4285191285 hasPrimaryLocation W42851912851 @default.
- W4285191285 hasRelatedWork W1520106371 @default.
- W4285191285 hasRelatedWork W177807718 @default.