Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285192286> ?p ?o ?g. }
- W4285192286 endingPage "427" @default.
- W4285192286 startingPage "422" @default.
- W4285192286 abstract "Detecting abnormal conditions in manufacturing processes is a crucial task to avoid unplanned downtimes and prevent quality issues. The increasing amount of available high-frequency process data combined with advances in the field of deep autoencoder-based monitoring offers huge potential in enhancing the performance of existing Multivariate Statistical Process Control approaches. We investigate the application of deep auto encoder-based monitoring approaches and experiment with the reconstruction error and the latent representation of the input data to compute Hotelling’s T2 and Squared Prediction Error monitoring statistics. The investigated approaches are validated using a real-world sheet metal forming process and show promising results." @default.
- W4285192286 created "2022-07-14" @default.
- W4285192286 creator A5029213443 @default.
- W4285192286 creator A5041171491 @default.
- W4285192286 creator A5064960759 @default.
- W4285192286 creator A5080587280 @default.
- W4285192286 creator A5088895777 @default.
- W4285192286 date "2022-01-01" @default.
- W4285192286 modified "2023-10-05" @default.
- W4285192286 title "Deep learning for multivariate statistical in-process control in discrete manufacturing: A case study in a sheet metal forming process" @default.
- W4285192286 cites W1566641586 @default.
- W4285192286 cites W195815859 @default.
- W4285192286 cites W1965669468 @default.
- W4285192286 cites W1966863755 @default.
- W4285192286 cites W1970088130 @default.
- W4285192286 cites W2001595608 @default.
- W4285192286 cites W2010148110 @default.
- W4285192286 cites W2028135769 @default.
- W4285192286 cites W2057283314 @default.
- W4285192286 cites W2064675550 @default.
- W4285192286 cites W2122646361 @default.
- W4285192286 cites W2163922914 @default.
- W4285192286 cites W2307884834 @default.
- W4285192286 cites W2322097696 @default.
- W4285192286 cites W2405320545 @default.
- W4285192286 cites W2916182456 @default.
- W4285192286 cites W2919115771 @default.
- W4285192286 cites W2922299424 @default.
- W4285192286 cites W2941089296 @default.
- W4285192286 cites W2945532623 @default.
- W4285192286 cites W3034254119 @default.
- W4285192286 cites W3036798749 @default.
- W4285192286 cites W3092046242 @default.
- W4285192286 cites W3098186591 @default.
- W4285192286 cites W3131637496 @default.
- W4285192286 cites W3135550350 @default.
- W4285192286 cites W3143979003 @default.
- W4285192286 cites W3217648969 @default.
- W4285192286 doi "https://doi.org/10.1016/j.procir.2022.05.002" @default.
- W4285192286 hasPublicationYear "2022" @default.
- W4285192286 type Work @default.
- W4285192286 citedByCount "1" @default.
- W4285192286 countsByYear W42851922862023 @default.
- W4285192286 crossrefType "journal-article" @default.
- W4285192286 hasAuthorship W4285192286A5029213443 @default.
- W4285192286 hasAuthorship W4285192286A5041171491 @default.
- W4285192286 hasAuthorship W4285192286A5064960759 @default.
- W4285192286 hasAuthorship W4285192286A5080587280 @default.
- W4285192286 hasAuthorship W4285192286A5088895777 @default.
- W4285192286 hasBestOaLocation W42851922861 @default.
- W4285192286 hasConcept C101738243 @default.
- W4285192286 hasConcept C108583219 @default.
- W4285192286 hasConcept C111919701 @default.
- W4285192286 hasConcept C113644684 @default.
- W4285192286 hasConcept C119857082 @default.
- W4285192286 hasConcept C124101348 @default.
- W4285192286 hasConcept C127413603 @default.
- W4285192286 hasConcept C154945302 @default.
- W4285192286 hasConcept C155386361 @default.
- W4285192286 hasConcept C161584116 @default.
- W4285192286 hasConcept C17744445 @default.
- W4285192286 hasConcept C199539241 @default.
- W4285192286 hasConcept C202444582 @default.
- W4285192286 hasConcept C2776359362 @default.
- W4285192286 hasConcept C2779747408 @default.
- W4285192286 hasConcept C33923547 @default.
- W4285192286 hasConcept C41008148 @default.
- W4285192286 hasConcept C78519656 @default.
- W4285192286 hasConcept C94625758 @default.
- W4285192286 hasConcept C9652623 @default.
- W4285192286 hasConcept C98045186 @default.
- W4285192286 hasConceptScore W4285192286C101738243 @default.
- W4285192286 hasConceptScore W4285192286C108583219 @default.
- W4285192286 hasConceptScore W4285192286C111919701 @default.
- W4285192286 hasConceptScore W4285192286C113644684 @default.
- W4285192286 hasConceptScore W4285192286C119857082 @default.
- W4285192286 hasConceptScore W4285192286C124101348 @default.
- W4285192286 hasConceptScore W4285192286C127413603 @default.
- W4285192286 hasConceptScore W4285192286C154945302 @default.
- W4285192286 hasConceptScore W4285192286C155386361 @default.
- W4285192286 hasConceptScore W4285192286C161584116 @default.
- W4285192286 hasConceptScore W4285192286C17744445 @default.
- W4285192286 hasConceptScore W4285192286C199539241 @default.
- W4285192286 hasConceptScore W4285192286C202444582 @default.
- W4285192286 hasConceptScore W4285192286C2776359362 @default.
- W4285192286 hasConceptScore W4285192286C2779747408 @default.
- W4285192286 hasConceptScore W4285192286C33923547 @default.
- W4285192286 hasConceptScore W4285192286C41008148 @default.
- W4285192286 hasConceptScore W4285192286C78519656 @default.
- W4285192286 hasConceptScore W4285192286C94625758 @default.
- W4285192286 hasConceptScore W4285192286C9652623 @default.
- W4285192286 hasConceptScore W4285192286C98045186 @default.
- W4285192286 hasLocation W42851922861 @default.
- W4285192286 hasOpenAccess W4285192286 @default.
- W4285192286 hasPrimaryLocation W42851922861 @default.
- W4285192286 hasRelatedWork W2044568926 @default.
- W4285192286 hasRelatedWork W2055715190 @default.
- W4285192286 hasRelatedWork W2153578143 @default.