Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285192725> ?p ?o ?g. }
- W4285192725 endingPage "994" @default.
- W4285192725 startingPage "981" @default.
- W4285192725 abstract "Robust and highly accurate position estimation in underground mines is investigated by considering a vehicle equipped with 2D laser scanners. A survey of available methods to process data from such sensors is performed with focus on feature extraction methods. Pros and cons of the usage of different methods for the positioning application with 2D laser data are highlighted, and suitable methods are identified. Three state-of-the-art feature extraction methods are adapted to the scenario of positioning in a predefined map and the methods are evaluated through experiments conducted in a simulated underground mine environment. Results indicate that feature extraction methods perform in parity with the method of matching each ray individually to the map, and better than the point cloud scan matching method of a pure ICP, assuming a highly accurate map is available. Furthermore, experiments show that feature extraction methods more robustly handle imperfections or regions of errors in the map by automatically disregarding these regions." @default.
- W4285192725 created "2022-07-14" @default.
- W4285192725 creator A5001137240 @default.
- W4285192725 creator A5003282094 @default.
- W4285192725 date "2023-04-01" @default.
- W4285192725 modified "2023-10-17" @default.
- W4285192725 title "Survey on 2D Lidar Feature Extraction for Underground Mine Usage" @default.
- W4285192725 cites W101785966 @default.
- W4285192725 cites W1489258026 @default.
- W4285192725 cites W1491719799 @default.
- W4285192725 cites W1567242735 @default.
- W4285192725 cites W1677409904 @default.
- W4285192725 cites W1749494163 @default.
- W4285192725 cites W1882440334 @default.
- W4285192725 cites W1883517952 @default.
- W4285192725 cites W1924417874 @default.
- W4285192725 cites W1976809435 @default.
- W4285192725 cites W1980911747 @default.
- W4285192725 cites W2007200979 @default.
- W4285192725 cites W2014596990 @default.
- W4285192725 cites W2022780873 @default.
- W4285192725 cites W2049981393 @default.
- W4285192725 cites W2052014837 @default.
- W4285192725 cites W2052408227 @default.
- W4285192725 cites W2057175746 @default.
- W4285192725 cites W2059470495 @default.
- W4285192725 cites W2071571922 @default.
- W4285192725 cites W2085120503 @default.
- W4285192725 cites W2085261163 @default.
- W4285192725 cites W2103544971 @default.
- W4285192725 cites W2108337347 @default.
- W4285192725 cites W2111308925 @default.
- W4285192725 cites W2117228865 @default.
- W4285192725 cites W2118608021 @default.
- W4285192725 cites W2119801619 @default.
- W4285192725 cites W2119851068 @default.
- W4285192725 cites W2124386111 @default.
- W4285192725 cites W2124865351 @default.
- W4285192725 cites W2128685679 @default.
- W4285192725 cites W2140526520 @default.
- W4285192725 cites W2142631141 @default.
- W4285192725 cites W2143064560 @default.
- W4285192725 cites W2143404995 @default.
- W4285192725 cites W2150066425 @default.
- W4285192725 cites W2151103935 @default.
- W4285192725 cites W2152864241 @default.
- W4285192725 cites W2156222070 @default.
- W4285192725 cites W2156307516 @default.
- W4285192725 cites W2157554397 @default.
- W4285192725 cites W2161469147 @default.
- W4285192725 cites W2161884391 @default.
- W4285192725 cites W2164408291 @default.
- W4285192725 cites W2167338900 @default.
- W4285192725 cites W2172068760 @default.
- W4285192725 cites W2177274842 @default.
- W4285192725 cites W2275442570 @default.
- W4285192725 cites W2563604660 @default.
- W4285192725 cites W2585485706 @default.
- W4285192725 cites W2766027872 @default.
- W4285192725 cites W2945710369 @default.
- W4285192725 cites W2962771180 @default.
- W4285192725 cites W3085806413 @default.
- W4285192725 cites W4253850128 @default.
- W4285192725 doi "https://doi.org/10.1109/tase.2022.3172522" @default.
- W4285192725 hasPublicationYear "2023" @default.
- W4285192725 type Work @default.
- W4285192725 citedByCount "1" @default.
- W4285192725 countsByYear W42851927252023 @default.
- W4285192725 crossrefType "journal-article" @default.
- W4285192725 hasAuthorship W4285192725A5001137240 @default.
- W4285192725 hasAuthorship W4285192725A5003282094 @default.
- W4285192725 hasBestOaLocation W42851927252 @default.
- W4285192725 hasConcept C105795698 @default.
- W4285192725 hasConcept C111919701 @default.
- W4285192725 hasConcept C120665830 @default.
- W4285192725 hasConcept C121332964 @default.
- W4285192725 hasConcept C124101348 @default.
- W4285192725 hasConcept C127313418 @default.
- W4285192725 hasConcept C131979681 @default.
- W4285192725 hasConcept C138885662 @default.
- W4285192725 hasConcept C153180895 @default.
- W4285192725 hasConcept C154945302 @default.
- W4285192725 hasConcept C165064840 @default.
- W4285192725 hasConcept C192209626 @default.
- W4285192725 hasConcept C2776401178 @default.
- W4285192725 hasConcept C31972630 @default.
- W4285192725 hasConcept C33923547 @default.
- W4285192725 hasConcept C41008148 @default.
- W4285192725 hasConcept C41895202 @default.
- W4285192725 hasConcept C51399673 @default.
- W4285192725 hasConcept C52622490 @default.
- W4285192725 hasConcept C62649853 @default.
- W4285192725 hasConcept C98045186 @default.
- W4285192725 hasConceptScore W4285192725C105795698 @default.
- W4285192725 hasConceptScore W4285192725C111919701 @default.
- W4285192725 hasConceptScore W4285192725C120665830 @default.
- W4285192725 hasConceptScore W4285192725C121332964 @default.
- W4285192725 hasConceptScore W4285192725C124101348 @default.