Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285192983> ?p ?o ?g. }
- W4285192983 endingPage "25" @default.
- W4285192983 startingPage "1" @default.
- W4285192983 abstract "Model with better learning ability and lower structural complexity is desirous for accurate exchange rate forecasting. Faster convergence to optimal solutions has always been a goal for the researcher in building forecasting models. And this is achieved by extreme learning machines (ELMs) due to their single hidden layer architecture and superior generalization ability. ELM is a simple training algorithm used to find the hidden-output layer weights by a random selection of input-hidden layer weights. Metaheuristics algorithms like Fireworks algorithm (FWA), Chemical reaction optimization (CRO), and Teaching learning-based optimization (TLBO) are employed to pre-train the ELM owing to their fewer optimizing parameters. This article aims to pre-train ELM using the said metaheuristics separately, ensuring the optimal solution of a single feedforward network (SLFN) with improved accuracy. The pre-trained ELMs provide accurate results. The same was verified using other primitive optimization algorithms" @default.
- W4285192983 created "2022-07-14" @default.
- W4285192983 creator A5000246076 @default.
- W4285192983 creator A5078422400 @default.
- W4285192983 creator A5086277450 @default.
- W4285192983 date "2022-05-06" @default.
- W4285192983 modified "2023-09-26" @default.
- W4285192983 title "Extreme Learning With Metaheuristic Optimization for Exchange Rate Forecasting" @default.
- W4285192983 cites W1069790386 @default.
- W4285192983 cites W1535723536 @default.
- W4285192983 cites W1965279137 @default.
- W4285192983 cites W1967989262 @default.
- W4285192983 cites W1979575715 @default.
- W4285192983 cites W1997754540 @default.
- W4285192983 cites W1999996900 @default.
- W4285192983 cites W2007205149 @default.
- W4285192983 cites W2016944307 @default.
- W4285192983 cites W2026131661 @default.
- W4285192983 cites W2026471620 @default.
- W4285192983 cites W2034486292 @default.
- W4285192983 cites W2035209205 @default.
- W4285192983 cites W2039595530 @default.
- W4285192983 cites W2040604977 @default.
- W4285192983 cites W2044674786 @default.
- W4285192983 cites W2059852492 @default.
- W4285192983 cites W2061684001 @default.
- W4285192983 cites W2066224491 @default.
- W4285192983 cites W2066505698 @default.
- W4285192983 cites W2067098334 @default.
- W4285192983 cites W2072097014 @default.
- W4285192983 cites W2075846637 @default.
- W4285192983 cites W2077344880 @default.
- W4285192983 cites W2094340389 @default.
- W4285192983 cites W2111072639 @default.
- W4285192983 cites W2118044993 @default.
- W4285192983 cites W2134918899 @default.
- W4285192983 cites W2136554306 @default.
- W4285192983 cites W2160612737 @default.
- W4285192983 cites W2180110293 @default.
- W4285192983 cites W2184207288 @default.
- W4285192983 cites W2413268212 @default.
- W4285192983 cites W2477834368 @default.
- W4285192983 cites W2562306917 @default.
- W4285192983 cites W2793675520 @default.
- W4285192983 cites W2946852493 @default.
- W4285192983 cites W2972093761 @default.
- W4285192983 cites W299640811 @default.
- W4285192983 cites W4233901032 @default.
- W4285192983 cites W4240893793 @default.
- W4285192983 cites W4246587917 @default.
- W4285192983 cites W4291327732 @default.
- W4285192983 cites W614119048 @default.
- W4285192983 cites W2128573370 @default.
- W4285192983 doi "https://doi.org/10.4018/ijsir.295099" @default.
- W4285192983 hasPublicationYear "2022" @default.
- W4285192983 type Work @default.
- W4285192983 citedByCount "1" @default.
- W4285192983 countsByYear W42851929832023 @default.
- W4285192983 crossrefType "journal-article" @default.
- W4285192983 hasAuthorship W4285192983A5000246076 @default.
- W4285192983 hasAuthorship W4285192983A5078422400 @default.
- W4285192983 hasAuthorship W4285192983A5086277450 @default.
- W4285192983 hasConcept C109718341 @default.
- W4285192983 hasConcept C11413529 @default.
- W4285192983 hasConcept C119857082 @default.
- W4285192983 hasConcept C126255220 @default.
- W4285192983 hasConcept C134306372 @default.
- W4285192983 hasConcept C154945302 @default.
- W4285192983 hasConcept C177148314 @default.
- W4285192983 hasConcept C2780150128 @default.
- W4285192983 hasConcept C33923547 @default.
- W4285192983 hasConcept C41008148 @default.
- W4285192983 hasConcept C50644808 @default.
- W4285192983 hasConceptScore W4285192983C109718341 @default.
- W4285192983 hasConceptScore W4285192983C11413529 @default.
- W4285192983 hasConceptScore W4285192983C119857082 @default.
- W4285192983 hasConceptScore W4285192983C126255220 @default.
- W4285192983 hasConceptScore W4285192983C134306372 @default.
- W4285192983 hasConceptScore W4285192983C154945302 @default.
- W4285192983 hasConceptScore W4285192983C177148314 @default.
- W4285192983 hasConceptScore W4285192983C2780150128 @default.
- W4285192983 hasConceptScore W4285192983C33923547 @default.
- W4285192983 hasConceptScore W4285192983C41008148 @default.
- W4285192983 hasConceptScore W4285192983C50644808 @default.
- W4285192983 hasIssue "1" @default.
- W4285192983 hasLocation W42851929831 @default.
- W4285192983 hasOpenAccess W4285192983 @default.
- W4285192983 hasPrimaryLocation W42851929831 @default.
- W4285192983 hasRelatedWork W1525510058 @default.
- W4285192983 hasRelatedWork W1545807863 @default.
- W4285192983 hasRelatedWork W2005318905 @default.
- W4285192983 hasRelatedWork W2295628041 @default.
- W4285192983 hasRelatedWork W2475251269 @default.
- W4285192983 hasRelatedWork W2969890106 @default.
- W4285192983 hasRelatedWork W3134233996 @default.
- W4285192983 hasRelatedWork W3185179407 @default.
- W4285192983 hasRelatedWork W4320060020 @default.
- W4285192983 hasRelatedWork W1629725936 @default.