Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285193710> ?p ?o ?g. }
- W4285193710 endingPage "9091" @default.
- W4285193710 startingPage "9083" @default.
- W4285193710 abstract "Interconnectivity and smart automation of Internet of Things in recent times have led to the concept of Industry 4.0. Together with the improvement in productivity and new business models, employment conditions should take advantage of these new technologies. Safety in the workplace is one of the most sensitive topics on matters that needs targeted and accurate solutions. The safety can be guaranteed by investigating the attention states of the workers, and in particular, their drowsiness levels. Several technologies have faced this problem by using biometrics, but how many of them are applicable in a real-case-use scenario of Industry 4.0? This article aims to answer this question by discussing available data and methods that can be used in specific workplaces. We highlight their limitations and accuracy to sketch out the recent literature that may contribute to worker safety in Industry 4.0. Finally, we point out a gap that needs to be filled in order to implement these strategies on a large scale." @default.
- W4285193710 created "2022-07-14" @default.
- W4285193710 creator A5002241280 @default.
- W4285193710 creator A5018403922 @default.
- W4285193710 creator A5034412164 @default.
- W4285193710 creator A5036423849 @default.
- W4285193710 date "2022-12-01" @default.
- W4285193710 modified "2023-09-24" @default.
- W4285193710 title "Drowsiness Detection in the Era of Industry 4.0: Are We Ready?" @default.
- W4285193710 cites W1904701389 @default.
- W4285193710 cites W2067135396 @default.
- W4285193710 cites W2282606863 @default.
- W4285193710 cites W2605351369 @default.
- W4285193710 cites W2605902560 @default.
- W4285193710 cites W2735553230 @default.
- W4285193710 cites W2753641205 @default.
- W4285193710 cites W2806835660 @default.
- W4285193710 cites W2897564305 @default.
- W4285193710 cites W2906548844 @default.
- W4285193710 cites W2906909175 @default.
- W4285193710 cites W2943512776 @default.
- W4285193710 cites W2946783148 @default.
- W4285193710 cites W2967815566 @default.
- W4285193710 cites W2970951928 @default.
- W4285193710 cites W2995356865 @default.
- W4285193710 cites W2995458901 @default.
- W4285193710 cites W2995744782 @default.
- W4285193710 cites W3006644525 @default.
- W4285193710 cites W3017275892 @default.
- W4285193710 cites W3037795203 @default.
- W4285193710 cites W3039769181 @default.
- W4285193710 cites W3043379606 @default.
- W4285193710 cites W3117977527 @default.
- W4285193710 cites W3120027252 @default.
- W4285193710 cites W3186942066 @default.
- W4285193710 cites W3187852190 @default.
- W4285193710 cites W3198527750 @default.
- W4285193710 cites W3215531718 @default.
- W4285193710 cites W4205710447 @default.
- W4285193710 doi "https://doi.org/10.1109/tii.2022.3173004" @default.
- W4285193710 hasPublicationYear "2022" @default.
- W4285193710 type Work @default.
- W4285193710 citedByCount "2" @default.
- W4285193710 countsByYear W42851937102023 @default.
- W4285193710 crossrefType "journal-article" @default.
- W4285193710 hasAuthorship W4285193710A5002241280 @default.
- W4285193710 hasAuthorship W4285193710A5018403922 @default.
- W4285193710 hasAuthorship W4285193710A5034412164 @default.
- W4285193710 hasAuthorship W4285193710A5036423849 @default.
- W4285193710 hasConcept C10138342 @default.
- W4285193710 hasConcept C112930515 @default.
- W4285193710 hasConcept C11413529 @default.
- W4285193710 hasConcept C115901376 @default.
- W4285193710 hasConcept C121332964 @default.
- W4285193710 hasConcept C127413603 @default.
- W4285193710 hasConcept C139719470 @default.
- W4285193710 hasConcept C144133560 @default.
- W4285193710 hasConcept C149635348 @default.
- W4285193710 hasConcept C154945302 @default.
- W4285193710 hasConcept C162324750 @default.
- W4285193710 hasConcept C182306322 @default.
- W4285193710 hasConcept C184297639 @default.
- W4285193710 hasConcept C202839342 @default.
- W4285193710 hasConcept C204983608 @default.
- W4285193710 hasConcept C207267971 @default.
- W4285193710 hasConcept C2522767166 @default.
- W4285193710 hasConcept C25516864 @default.
- W4285193710 hasConcept C2777986313 @default.
- W4285193710 hasConcept C2778755073 @default.
- W4285193710 hasConcept C2779231336 @default.
- W4285193710 hasConcept C38652104 @default.
- W4285193710 hasConcept C41008148 @default.
- W4285193710 hasConcept C62520636 @default.
- W4285193710 hasConcept C78519656 @default.
- W4285193710 hasConcept C81860439 @default.
- W4285193710 hasConceptScore W4285193710C10138342 @default.
- W4285193710 hasConceptScore W4285193710C112930515 @default.
- W4285193710 hasConceptScore W4285193710C11413529 @default.
- W4285193710 hasConceptScore W4285193710C115901376 @default.
- W4285193710 hasConceptScore W4285193710C121332964 @default.
- W4285193710 hasConceptScore W4285193710C127413603 @default.
- W4285193710 hasConceptScore W4285193710C139719470 @default.
- W4285193710 hasConceptScore W4285193710C144133560 @default.
- W4285193710 hasConceptScore W4285193710C149635348 @default.
- W4285193710 hasConceptScore W4285193710C154945302 @default.
- W4285193710 hasConceptScore W4285193710C162324750 @default.
- W4285193710 hasConceptScore W4285193710C182306322 @default.
- W4285193710 hasConceptScore W4285193710C184297639 @default.
- W4285193710 hasConceptScore W4285193710C202839342 @default.
- W4285193710 hasConceptScore W4285193710C204983608 @default.
- W4285193710 hasConceptScore W4285193710C207267971 @default.
- W4285193710 hasConceptScore W4285193710C2522767166 @default.
- W4285193710 hasConceptScore W4285193710C25516864 @default.
- W4285193710 hasConceptScore W4285193710C2777986313 @default.
- W4285193710 hasConceptScore W4285193710C2778755073 @default.
- W4285193710 hasConceptScore W4285193710C2779231336 @default.
- W4285193710 hasConceptScore W4285193710C38652104 @default.
- W4285193710 hasConceptScore W4285193710C41008148 @default.