Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285195596> ?p ?o ?g. }
- W4285195596 endingPage "3644" @default.
- W4285195596 startingPage "3635" @default.
- W4285195596 abstract "The attention mechanism is one of the most influential ideas in the deep learning community, which has shown excellent efficiency in various computer vision tasks. Thus, this article proposes the convolution neural network method with the attention mechanism to enhance the feature extraction of light detection and ranging (LiDAR) data. Meanwhile, our elaborately designed cascaded block contains a short path architecture beneficial for multistage information exchange. With the full exploitation of elevation information from LiDAR data and efficient utilization of the spatial-spectral information underlying hyperspectral data, our method provides a novel solution for multimodal feature fusion. Experiments are conducted on the LiDAR and hyperspectral dataset provided by the 2013 IEEE GRSS Data Fusion Contest and multisource Trento dataset to demonstrate the effectiveness of the proposed method. The experimental results have shown the superior results of the proposed method on both LiDAR and multimodality remote sensing data in comparison with several popular baselines." @default.
- W4285195596 created "2022-07-14" @default.
- W4285195596 creator A5013885739 @default.
- W4285195596 creator A5023250695 @default.
- W4285195596 creator A5046887099 @default.
- W4285195596 creator A5064140321 @default.
- W4285195596 creator A5066378186 @default.
- W4285195596 date "2023-01-01" @default.
- W4285195596 modified "2023-10-05" @default.
- W4285195596 title "Multimodal Attention-Aware Convolutional Neural Networks for Classification of Hyperspectral and LiDAR Data" @default.
- W4285195596 cites W1497089125 @default.
- W4285195596 cites W1551648222 @default.
- W4285195596 cites W1584663654 @default.
- W4285195596 cites W1997718749 @default.
- W4285195596 cites W2113513024 @default.
- W4285195596 cites W2116699851 @default.
- W4285195596 cites W2128272608 @default.
- W4285195596 cites W2154636369 @default.
- W4285195596 cites W2164315346 @default.
- W4285195596 cites W2346557146 @default.
- W4285195596 cites W2565258258 @default.
- W4285195596 cites W2565516711 @default.
- W4285195596 cites W2606929568 @default.
- W4285195596 cites W2623518586 @default.
- W4285195596 cites W2763731268 @default.
- W4285195596 cites W2890732922 @default.
- W4285195596 cites W2907574584 @default.
- W4285195596 cites W2908955282 @default.
- W4285195596 cites W2910655660 @default.
- W4285195596 cites W2912058580 @default.
- W4285195596 cites W2937933649 @default.
- W4285195596 cites W2942170965 @default.
- W4285195596 cites W2950266692 @default.
- W4285195596 cites W2963945179 @default.
- W4285195596 cites W2994639710 @default.
- W4285195596 cites W3004968762 @default.
- W4285195596 cites W3022202378 @default.
- W4285195596 cites W3037458146 @default.
- W4285195596 cites W3040988483 @default.
- W4285195596 cites W3043181422 @default.
- W4285195596 cites W3047443805 @default.
- W4285195596 cites W3097353710 @default.
- W4285195596 cites W3101012758 @default.
- W4285195596 cites W3101640299 @default.
- W4285195596 cites W3102405604 @default.
- W4285195596 cites W3108948422 @default.
- W4285195596 cites W3140885850 @default.
- W4285195596 cites W3154512708 @default.
- W4285195596 cites W3168367808 @default.
- W4285195596 cites W3195162645 @default.
- W4285195596 cites W3209540366 @default.
- W4285195596 cites W3214821343 @default.
- W4285195596 cites W4213185605 @default.
- W4285195596 cites W4214847365 @default.
- W4285195596 cites W4229058281 @default.
- W4285195596 cites W4239510810 @default.
- W4285195596 doi "https://doi.org/10.1109/jstars.2022.3187730" @default.
- W4285195596 hasPublicationYear "2023" @default.
- W4285195596 type Work @default.
- W4285195596 citedByCount "8" @default.
- W4285195596 countsByYear W42851955962023 @default.
- W4285195596 crossrefType "journal-article" @default.
- W4285195596 hasAuthorship W4285195596A5013885739 @default.
- W4285195596 hasAuthorship W4285195596A5023250695 @default.
- W4285195596 hasAuthorship W4285195596A5046887099 @default.
- W4285195596 hasAuthorship W4285195596A5064140321 @default.
- W4285195596 hasAuthorship W4285195596A5066378186 @default.
- W4285195596 hasBestOaLocation W42851955961 @default.
- W4285195596 hasConcept C108583219 @default.
- W4285195596 hasConcept C115051666 @default.
- W4285195596 hasConcept C138885662 @default.
- W4285195596 hasConcept C153180895 @default.
- W4285195596 hasConcept C154945302 @default.
- W4285195596 hasConcept C159078339 @default.
- W4285195596 hasConcept C205649164 @default.
- W4285195596 hasConcept C2524010 @default.
- W4285195596 hasConcept C2776401178 @default.
- W4285195596 hasConcept C2777210771 @default.
- W4285195596 hasConcept C33923547 @default.
- W4285195596 hasConcept C33954974 @default.
- W4285195596 hasConcept C41008148 @default.
- W4285195596 hasConcept C41895202 @default.
- W4285195596 hasConcept C45347329 @default.
- W4285195596 hasConcept C50644808 @default.
- W4285195596 hasConcept C51399673 @default.
- W4285195596 hasConcept C52622490 @default.
- W4285195596 hasConcept C62649853 @default.
- W4285195596 hasConcept C76155785 @default.
- W4285195596 hasConcept C81363708 @default.
- W4285195596 hasConceptScore W4285195596C108583219 @default.
- W4285195596 hasConceptScore W4285195596C115051666 @default.
- W4285195596 hasConceptScore W4285195596C138885662 @default.
- W4285195596 hasConceptScore W4285195596C153180895 @default.
- W4285195596 hasConceptScore W4285195596C154945302 @default.
- W4285195596 hasConceptScore W4285195596C159078339 @default.
- W4285195596 hasConceptScore W4285195596C205649164 @default.
- W4285195596 hasConceptScore W4285195596C2524010 @default.
- W4285195596 hasConceptScore W4285195596C2776401178 @default.