Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285196632> ?p ?o ?g. }
- W4285196632 endingPage "231" @default.
- W4285196632 startingPage "212" @default.
- W4285196632 abstract "Predicting student dropout is becoming imperative in online learning platforms. Before COVID-19, predicting student dropout was systematically done manually. Therefore, there is a need to analyse students’ behaviour, cognitive learning styles, and other metacognitive patterns of learning in real-time from available data repositories to reduce student dropout and subsequently develop robust strategies for instructional design and remedial interventions to enhance student success and retention. In this study, we present a comprehensive review of deep learning models applied to predict student dropout in online learning platforms. In addition, challenges and opportunities associated with online learning are presented in this study. The study revealed that convolutional neural networks, recurrent neural networks, long short-term memory and bidirectional long short-term memory have been predominantly used to predict student dropout using predictors such as course assessments, socio-economic, access to online resources, personal skills and course attributes. However, the study revealed that the psychological state of students was not taken into consideration by many authors, yet it impacts students’ learning outcomes and assists policymakers in providing remedial interventions. Therefore, future work can delve deeper into the integration of psychological attributes such as stress, anxiety, attitude towards studying, student interests and counselling sessions to predict student dropout during disasters and health emergencies." @default.
- W4285196632 created "2022-07-14" @default.
- W4285196632 creator A5014775353 @default.
- W4285196632 creator A5035219374 @default.
- W4285196632 creator A5056671289 @default.
- W4285196632 creator A5060442790 @default.
- W4285196632 creator A5077512113 @default.
- W4285196632 creator A5078990921 @default.
- W4285196632 creator A5088993977 @default.
- W4285196632 creator A5090546627 @default.
- W4285196632 date "2022-01-01" @default.
- W4285196632 modified "2023-09-26" @default.
- W4285196632 title "Predicting Student Dropout in Massive Open Online Courses Using Deep Learning Models - A Systematic Review" @default.
- W4285196632 cites W2064675550 @default.
- W4285196632 cites W2161374186 @default.
- W4285196632 cites W2610815594 @default.
- W4285196632 cites W2791021147 @default.
- W4285196632 cites W2808989581 @default.
- W4285196632 cites W2891602716 @default.
- W4285196632 cites W2897614747 @default.
- W4285196632 cites W2912215027 @default.
- W4285196632 cites W2946527867 @default.
- W4285196632 cites W2963499111 @default.
- W4285196632 cites W2963608065 @default.
- W4285196632 cites W2966808979 @default.
- W4285196632 cites W2973946059 @default.
- W4285196632 cites W2980891379 @default.
- W4285196632 cites W2983382509 @default.
- W4285196632 cites W2993511405 @default.
- W4285196632 cites W2993816378 @default.
- W4285196632 cites W3001313205 @default.
- W4285196632 cites W3007158916 @default.
- W4285196632 cites W3010281412 @default.
- W4285196632 cites W3032381418 @default.
- W4285196632 cites W3038042748 @default.
- W4285196632 cites W3040010078 @default.
- W4285196632 cites W3040103802 @default.
- W4285196632 cites W3042743974 @default.
- W4285196632 cites W3045479688 @default.
- W4285196632 cites W3082384720 @default.
- W4285196632 cites W3089456325 @default.
- W4285196632 cites W3092255774 @default.
- W4285196632 cites W3097830613 @default.
- W4285196632 cites W3111056695 @default.
- W4285196632 cites W3123809919 @default.
- W4285196632 cites W3125889363 @default.
- W4285196632 cites W3128816485 @default.
- W4285196632 cites W3134743308 @default.
- W4285196632 cites W3136660290 @default.
- W4285196632 cites W3138315945 @default.
- W4285196632 cites W3153366859 @default.
- W4285196632 cites W3161735400 @default.
- W4285196632 cites W3163443688 @default.
- W4285196632 cites W3166886836 @default.
- W4285196632 cites W3175302149 @default.
- W4285196632 cites W3177944730 @default.
- W4285196632 cites W3181096080 @default.
- W4285196632 cites W3183835016 @default.
- W4285196632 cites W3187568042 @default.
- W4285196632 cites W3197025345 @default.
- W4285196632 cites W4205624605 @default.
- W4285196632 cites W4225795232 @default.
- W4285196632 cites W4237896256 @default.
- W4285196632 cites W4247615697 @default.
- W4285196632 cites W4294215472 @default.
- W4285196632 doi "https://doi.org/10.1007/978-3-031-09073-8_20" @default.
- W4285196632 hasPublicationYear "2022" @default.
- W4285196632 type Work @default.
- W4285196632 citedByCount "3" @default.
- W4285196632 countsByYear W42851966322022 @default.
- W4285196632 countsByYear W42851966322023 @default.
- W4285196632 crossrefType "book-chapter" @default.
- W4285196632 hasAuthorship W4285196632A5014775353 @default.
- W4285196632 hasAuthorship W4285196632A5035219374 @default.
- W4285196632 hasAuthorship W4285196632A5056671289 @default.
- W4285196632 hasAuthorship W4285196632A5060442790 @default.
- W4285196632 hasAuthorship W4285196632A5077512113 @default.
- W4285196632 hasAuthorship W4285196632A5078990921 @default.
- W4285196632 hasAuthorship W4285196632A5088993977 @default.
- W4285196632 hasAuthorship W4285196632A5090546627 @default.
- W4285196632 hasConcept C100207952 @default.
- W4285196632 hasConcept C118147538 @default.
- W4285196632 hasConcept C118552586 @default.
- W4285196632 hasConcept C119857082 @default.
- W4285196632 hasConcept C145420912 @default.
- W4285196632 hasConcept C15744967 @default.
- W4285196632 hasConcept C169760540 @default.
- W4285196632 hasConcept C169900460 @default.
- W4285196632 hasConcept C27415008 @default.
- W4285196632 hasConcept C2776145597 @default.
- W4285196632 hasConcept C2986087404 @default.
- W4285196632 hasConcept C41008148 @default.
- W4285196632 hasConcept C49774154 @default.
- W4285196632 hasConcept C509550671 @default.
- W4285196632 hasConcept C558461103 @default.
- W4285196632 hasConcept C71924100 @default.
- W4285196632 hasConcept C75630572 @default.
- W4285196632 hasConceptScore W4285196632C100207952 @default.