Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285198092> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4285198092 endingPage "339" @default.
- W4285198092 startingPage "323" @default.
- W4285198092 abstract "Electrocardiogram (ECG) signal has been widely studied for biometric recognition (or subject identification) applications over the past decade. Many techniques have been offered as well, from traditional computing to machine learning techniques. However, most studies evaluate their proposed models by independently separating the datasets between healthy (normal) and unhealthy (abnormal/arrhythmia) heart conditions. Some studies even used the ECG signal datasets from subjects only under healthy heart conditions. We believe that developing an ECG-based biometric system that includes the heart, both under healthy and unhealthy conditions, is highly needed since the users might be in both conditions. To the best of our knowledge, this is the first study in the literature, which considers the combination of the dataset of ECG signals from subjects under the healthy heart and unhealthy (arrhythmia) conditions in training, validation, and even testing processes. We combined the datasets from MIT-BIH Normal Sinus Rhythm, MIT-BIH Arrhythmia, and St Petersburg INCART 12-lead Arrhythmia databases obtained from Physionet. From the combination of those databases, we obtained a total of 32,628 datasets from 89 subjects which were later modeled using a machine learning technique, i.e., one-dimensional convolutional neural network (CONV1D). This study aims to build a light-weight yet reliable ECG-based biometric system by implementing only two layers of the convolutional neural network into those joined datasets. We evaluated the model's performance with k-fold cross-validation (k = 5) and yielded the accuracy and F1-scores of 99.8% And 99.8% respectively. We also proved that our model is a good fitting (not under/over-fitting) by providing the visualization plot of accuracy and loss. These findings show that our model is robust enough for ECG-based subject identification, which can be implemented for healthy and unhealthy heart conditions." @default.
- W4285198092 created "2022-07-14" @default.
- W4285198092 creator A5021738424 @default.
- W4285198092 creator A5025046897 @default.
- W4285198092 date "2022-01-01" @default.
- W4285198092 modified "2023-09-30" @default.
- W4285198092 title "Implementation of One-Dimensional Convolutional Neural Network for Individual Identification Based on ECG Signal" @default.
- W4285198092 cites W1891987630 @default.
- W4285198092 cites W1969793586 @default.
- W4285198092 cites W1996777517 @default.
- W4285198092 cites W2516218154 @default.
- W4285198092 cites W2521641300 @default.
- W4285198092 cites W2527990640 @default.
- W4285198092 cites W2580767461 @default.
- W4285198092 cites W2588409571 @default.
- W4285198092 cites W2809254203 @default.
- W4285198092 cites W2810867157 @default.
- W4285198092 cites W2964487544 @default.
- W4285198092 cites W2996694012 @default.
- W4285198092 cites W2996806576 @default.
- W4285198092 cites W3003525670 @default.
- W4285198092 cites W3099206234 @default.
- W4285198092 cites W3118577024 @default.
- W4285198092 cites W3122226502 @default.
- W4285198092 cites W3155948883 @default.
- W4285198092 cites W3173046724 @default.
- W4285198092 cites W4205892443 @default.
- W4285198092 doi "https://doi.org/10.1007/978-981-19-1804-9_26" @default.
- W4285198092 hasPublicationYear "2022" @default.
- W4285198092 type Work @default.
- W4285198092 citedByCount "0" @default.
- W4285198092 crossrefType "book-chapter" @default.
- W4285198092 hasAuthorship W4285198092A5021738424 @default.
- W4285198092 hasAuthorship W4285198092A5025046897 @default.
- W4285198092 hasConcept C116834253 @default.
- W4285198092 hasConcept C119857082 @default.
- W4285198092 hasConcept C153180895 @default.
- W4285198092 hasConcept C154945302 @default.
- W4285198092 hasConcept C164705383 @default.
- W4285198092 hasConcept C184297639 @default.
- W4285198092 hasConcept C2779161974 @default.
- W4285198092 hasConcept C2908745016 @default.
- W4285198092 hasConcept C2988455589 @default.
- W4285198092 hasConcept C41008148 @default.
- W4285198092 hasConcept C50644808 @default.
- W4285198092 hasConcept C59822182 @default.
- W4285198092 hasConcept C71924100 @default.
- W4285198092 hasConcept C81363708 @default.
- W4285198092 hasConcept C86803240 @default.
- W4285198092 hasConceptScore W4285198092C116834253 @default.
- W4285198092 hasConceptScore W4285198092C119857082 @default.
- W4285198092 hasConceptScore W4285198092C153180895 @default.
- W4285198092 hasConceptScore W4285198092C154945302 @default.
- W4285198092 hasConceptScore W4285198092C164705383 @default.
- W4285198092 hasConceptScore W4285198092C184297639 @default.
- W4285198092 hasConceptScore W4285198092C2779161974 @default.
- W4285198092 hasConceptScore W4285198092C2908745016 @default.
- W4285198092 hasConceptScore W4285198092C2988455589 @default.
- W4285198092 hasConceptScore W4285198092C41008148 @default.
- W4285198092 hasConceptScore W4285198092C50644808 @default.
- W4285198092 hasConceptScore W4285198092C59822182 @default.
- W4285198092 hasConceptScore W4285198092C71924100 @default.
- W4285198092 hasConceptScore W4285198092C81363708 @default.
- W4285198092 hasConceptScore W4285198092C86803240 @default.
- W4285198092 hasLocation W42851980921 @default.
- W4285198092 hasOpenAccess W4285198092 @default.
- W4285198092 hasPrimaryLocation W42851980921 @default.
- W4285198092 hasRelatedWork W2175746458 @default.
- W4285198092 hasRelatedWork W2732542196 @default.
- W4285198092 hasRelatedWork W2760085659 @default.
- W4285198092 hasRelatedWork W2883200793 @default.
- W4285198092 hasRelatedWork W3027997911 @default.
- W4285198092 hasRelatedWork W3093612317 @default.
- W4285198092 hasRelatedWork W3159181387 @default.
- W4285198092 hasRelatedWork W3173739530 @default.
- W4285198092 hasRelatedWork W4280544563 @default.
- W4285198092 hasRelatedWork W4287776258 @default.
- W4285198092 isParatext "false" @default.
- W4285198092 isRetracted "false" @default.
- W4285198092 workType "book-chapter" @default.