Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285201508> ?p ?o ?g. }
- W4285201508 endingPage "291" @default.
- W4285201508 startingPage "261" @default.
- W4285201508 abstract "Leukemia is a blood malignancy that occurs due to neoplastic proliferation of bone marrow precursor cells resulting in impaired immunity, bleeding tendencies, and ineffective erythropoiesis. Therefore, several manual methods have been developed in the past to detect leukemia, but they have proven to be inaccurate and unreliable. The pathologist may recommend a bone marrow examination to confirm and identify the type of leukemia. This traditional method is time-consuming, and the medical professional’s expertise in diagnosing leukemia may have inaccurate. In this chapter, it has been observed that there are numerous studies for the detection of acute leukemia, but there are only a few studies to detect chronic leukemia. Additionally, microscopic-based methods can be used to analyze microscopic smear images and detect the incidence of leukemia automatically and quickly. It also discusses the benefits, drawbacks, and limitations of a variety of traditional Artificial Intelligence-based approaches for detecting leukemia, such as machine learning and deep learning. Hence, this chapter aims to review the existing literature in the field of medical image processing of blood smear images, with a focus on automated leukemia detection. The analysis of various studies shows that deep learning techniques provide the best results compared to machine learning techniques. Hence, the major drawback in recent studies is that most of the research has been done on locally available datasets. Another weakness in the publicly available datasets is that they have a limited number of images. To solve these issues, research community should focus on large publicly available datasets." @default.
- W4285201508 created "2022-07-14" @default.
- W4285201508 creator A5003828287 @default.
- W4285201508 creator A5012083138 @default.
- W4285201508 creator A5033634358 @default.
- W4285201508 creator A5058842912 @default.
- W4285201508 creator A5066076129 @default.
- W4285201508 date "2022-01-01" @default.
- W4285201508 modified "2023-10-16" @default.
- W4285201508 title "Leukemia Detection Using Machine and Deep Learning Through Microscopic Images—A Review" @default.
- W4285201508 cites W1722290647 @default.
- W4285201508 cites W2213155123 @default.
- W4285201508 cites W2402659155 @default.
- W4285201508 cites W2439409312 @default.
- W4285201508 cites W2498418174 @default.
- W4285201508 cites W2561844903 @default.
- W4285201508 cites W2565313368 @default.
- W4285201508 cites W2566202426 @default.
- W4285201508 cites W2593586875 @default.
- W4285201508 cites W2598298851 @default.
- W4285201508 cites W2736844740 @default.
- W4285201508 cites W2762113702 @default.
- W4285201508 cites W2765934242 @default.
- W4285201508 cites W2768086057 @default.
- W4285201508 cites W2770167649 @default.
- W4285201508 cites W2770842918 @default.
- W4285201508 cites W2786454292 @default.
- W4285201508 cites W2798219973 @default.
- W4285201508 cites W2801148351 @default.
- W4285201508 cites W2810305204 @default.
- W4285201508 cites W2890671308 @default.
- W4285201508 cites W2893154092 @default.
- W4285201508 cites W2896174030 @default.
- W4285201508 cites W2910206206 @default.
- W4285201508 cites W2935163427 @default.
- W4285201508 cites W2947431583 @default.
- W4285201508 cites W2951015619 @default.
- W4285201508 cites W2959123891 @default.
- W4285201508 cites W2972638668 @default.
- W4285201508 cites W2980045158 @default.
- W4285201508 cites W2983280015 @default.
- W4285201508 cites W2996721101 @default.
- W4285201508 cites W3016457468 @default.
- W4285201508 cites W3017781815 @default.
- W4285201508 cites W3082931514 @default.
- W4285201508 cites W3086545655 @default.
- W4285201508 cites W3089921054 @default.
- W4285201508 cites W3131141351 @default.
- W4285201508 cites W3160890506 @default.
- W4285201508 cites W3162113556 @default.
- W4285201508 cites W3162222275 @default.
- W4285201508 cites W3162323063 @default.
- W4285201508 cites W3170241800 @default.
- W4285201508 cites W3180110917 @default.
- W4285201508 cites W3180942661 @default.
- W4285201508 cites W3194382159 @default.
- W4285201508 cites W3197894726 @default.
- W4285201508 cites W3208674021 @default.
- W4285201508 cites W4210338317 @default.
- W4285201508 cites W4210510666 @default.
- W4285201508 cites W4210519687 @default.
- W4285201508 cites W4210993178 @default.
- W4285201508 cites W4211225719 @default.
- W4285201508 cites W4212977859 @default.
- W4285201508 doi "https://doi.org/10.1007/978-981-19-2057-8_10" @default.
- W4285201508 hasPublicationYear "2022" @default.
- W4285201508 type Work @default.
- W4285201508 citedByCount "0" @default.
- W4285201508 crossrefType "book-chapter" @default.
- W4285201508 hasAuthorship W4285201508A5003828287 @default.
- W4285201508 hasAuthorship W4285201508A5012083138 @default.
- W4285201508 hasAuthorship W4285201508A5033634358 @default.
- W4285201508 hasAuthorship W4285201508A5058842912 @default.
- W4285201508 hasAuthorship W4285201508A5066076129 @default.
- W4285201508 hasConcept C108583219 @default.
- W4285201508 hasConcept C119857082 @default.
- W4285201508 hasConcept C136197465 @default.
- W4285201508 hasConcept C142724271 @default.
- W4285201508 hasConcept C154945302 @default.
- W4285201508 hasConcept C203014093 @default.
- W4285201508 hasConcept C2776863199 @default.
- W4285201508 hasConcept C2778048844 @default.
- W4285201508 hasConcept C2778461978 @default.
- W4285201508 hasConcept C2780007613 @default.
- W4285201508 hasConcept C3017819844 @default.
- W4285201508 hasConcept C41008148 @default.
- W4285201508 hasConcept C71924100 @default.
- W4285201508 hasConceptScore W4285201508C108583219 @default.
- W4285201508 hasConceptScore W4285201508C119857082 @default.
- W4285201508 hasConceptScore W4285201508C136197465 @default.
- W4285201508 hasConceptScore W4285201508C142724271 @default.
- W4285201508 hasConceptScore W4285201508C154945302 @default.
- W4285201508 hasConceptScore W4285201508C203014093 @default.
- W4285201508 hasConceptScore W4285201508C2776863199 @default.
- W4285201508 hasConceptScore W4285201508C2778048844 @default.
- W4285201508 hasConceptScore W4285201508C2778461978 @default.
- W4285201508 hasConceptScore W4285201508C2780007613 @default.
- W4285201508 hasConceptScore W4285201508C3017819844 @default.