Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285201527> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4285201527 endingPage "472" @default.
- W4285201527 startingPage "457" @default.
- W4285201527 abstract "With the alarming rate of increase in chronic kidney disease (CKD) cases all over the world, researchers are trying to resolve it with state-of-the-art methods. It is evident that in a certain time period such disease gradually disrupts other organs functioning eventually causing death of patients. Early detection of CKD can diminish the chances of further damage to a great extent. Considering the UCI Machine Learning CKD dataset, this work attempts to present a more reliable approach, enabling handling of noisy data. However, CKD dataset contains noisy and inconsistent values, resulting in inaccurate prediction of CKD by using traditional machine learning algorithms. Therefore, this research presents an approach of handling noisy and inaccurate values of CKD dataset by employing a combination of deep neural network, statistical methods, Principal Component analysis (PCA), and “SMOTE”. Consequently, the refined CKD dataset coming out of the mentioned pre-processed methods is used in various machine learning methods. Our results showed that RF outperformed with 98.5% accuracy among Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree (DT), Naive Bayes (NB), and Logistic Regression (LR) classifiers. Additionally, we found that the features such as serum-creatinine and blood urea exhibited their dominance in outcome prediction." @default.
- W4285201527 created "2022-07-14" @default.
- W4285201527 creator A5059780368 @default.
- W4285201527 creator A5081206139 @default.
- W4285201527 creator A5083029577 @default.
- W4285201527 creator A5004611847 @default.
- W4285201527 date "2022-01-01" @default.
- W4285201527 modified "2023-10-16" @default.
- W4285201527 title "An Approach to Detect Chronic Kidney Disease (CKD) by Removing Noisy and Inconsistent Values of UCI Dataset" @default.
- W4285201527 cites W2039975386 @default.
- W4285201527 cites W2043575472 @default.
- W4285201527 cites W2509136010 @default.
- W4285201527 cites W2551502590 @default.
- W4285201527 cites W2565755368 @default.
- W4285201527 cites W2573050954 @default.
- W4285201527 cites W2608531512 @default.
- W4285201527 cites W2614986146 @default.
- W4285201527 cites W2736808963 @default.
- W4285201527 cites W2752073414 @default.
- W4285201527 cites W2796884049 @default.
- W4285201527 cites W2805564751 @default.
- W4285201527 cites W2910355480 @default.
- W4285201527 cites W2940596626 @default.
- W4285201527 cites W2955975353 @default.
- W4285201527 cites W2972606465 @default.
- W4285201527 cites W2973972068 @default.
- W4285201527 cites W3045656945 @default.
- W4285201527 cites W3095650403 @default.
- W4285201527 cites W3131057326 @default.
- W4285201527 cites W3155440015 @default.
- W4285201527 cites W3185119221 @default.
- W4285201527 cites W3185204387 @default.
- W4285201527 doi "https://doi.org/10.1007/978-981-16-7597-3_38" @default.
- W4285201527 hasPublicationYear "2022" @default.
- W4285201527 type Work @default.
- W4285201527 citedByCount "0" @default.
- W4285201527 crossrefType "book-chapter" @default.
- W4285201527 hasAuthorship W4285201527A5004611847 @default.
- W4285201527 hasAuthorship W4285201527A5059780368 @default.
- W4285201527 hasAuthorship W4285201527A5081206139 @default.
- W4285201527 hasAuthorship W4285201527A5083029577 @default.
- W4285201527 hasConcept C119857082 @default.
- W4285201527 hasConcept C12267149 @default.
- W4285201527 hasConcept C124101348 @default.
- W4285201527 hasConcept C126322002 @default.
- W4285201527 hasConcept C151956035 @default.
- W4285201527 hasConcept C154945302 @default.
- W4285201527 hasConcept C27438332 @default.
- W4285201527 hasConcept C2778653478 @default.
- W4285201527 hasConcept C41008148 @default.
- W4285201527 hasConcept C52001869 @default.
- W4285201527 hasConcept C71924100 @default.
- W4285201527 hasConcept C84525736 @default.
- W4285201527 hasConceptScore W4285201527C119857082 @default.
- W4285201527 hasConceptScore W4285201527C12267149 @default.
- W4285201527 hasConceptScore W4285201527C124101348 @default.
- W4285201527 hasConceptScore W4285201527C126322002 @default.
- W4285201527 hasConceptScore W4285201527C151956035 @default.
- W4285201527 hasConceptScore W4285201527C154945302 @default.
- W4285201527 hasConceptScore W4285201527C27438332 @default.
- W4285201527 hasConceptScore W4285201527C2778653478 @default.
- W4285201527 hasConceptScore W4285201527C41008148 @default.
- W4285201527 hasConceptScore W4285201527C52001869 @default.
- W4285201527 hasConceptScore W4285201527C71924100 @default.
- W4285201527 hasConceptScore W4285201527C84525736 @default.
- W4285201527 hasLocation W42852015271 @default.
- W4285201527 hasOpenAccess W4285201527 @default.
- W4285201527 hasPrimaryLocation W42852015271 @default.
- W4285201527 hasRelatedWork W1470425429 @default.
- W4285201527 hasRelatedWork W3018390422 @default.
- W4285201527 hasRelatedWork W3186233728 @default.
- W4285201527 hasRelatedWork W4281846282 @default.
- W4285201527 hasRelatedWork W4291177832 @default.
- W4285201527 hasRelatedWork W4321636153 @default.
- W4285201527 hasRelatedWork W4377964522 @default.
- W4285201527 hasRelatedWork W4383535405 @default.
- W4285201527 hasRelatedWork W4384345534 @default.
- W4285201527 hasRelatedWork W4386263996 @default.
- W4285201527 isParatext "false" @default.
- W4285201527 isRetracted "false" @default.
- W4285201527 workType "book-chapter" @default.