Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285202619> ?p ?o ?g. }
- W4285202619 endingPage "688" @default.
- W4285202619 startingPage "679" @default.
- W4285202619 abstract "Sensors equipped in the high-speed trains can collect a lot of data with the normal working condition and different faults that occurred. In recent years, many data-driven methods were developed for fault detection and diagnosis (FDD). However, inaccurate diagnosis and costly computation are still the great challenges that exist. In order to address those issues, this article developed an FDD architecture using statistic feature and the improved broad learning system (BLS) to promote performance. It uses statistic feature to capture the inherit discrimination of normal data and fault data, and then adopts the improved BLS model to achieve the accurate and fast fault diagnosis without time-consuming training and mathematical models of high-speed trains. In validation, the proposed FDD scheme is first conducted on a software-based fault-injection simulation platform; it can give guiding significance for the subsequent hardware-in-the-loop simulation platform. All results show that the presented FDD framework achieves state-of-the-art performance than the other mainstream FDD methods." @default.
- W4285202619 created "2022-07-14" @default.
- W4285202619 creator A5013643897 @default.
- W4285202619 creator A5017741651 @default.
- W4285202619 creator A5043880116 @default.
- W4285202619 date "2023-08-01" @default.
- W4285202619 modified "2023-10-11" @default.
- W4285202619 title "Fault Detection and Diagnosis Using Statistic Feature and Improved Broad Learning for Traction Systems in High-Speed Trains" @default.
- W4285202619 cites W1993575553 @default.
- W4285202619 cites W2073320067 @default.
- W4285202619 cites W2103112267 @default.
- W4285202619 cites W2154575021 @default.
- W4285202619 cites W2158958729 @default.
- W4285202619 cites W2167061718 @default.
- W4285202619 cites W2205067742 @default.
- W4285202619 cites W2315109789 @default.
- W4285202619 cites W2516214878 @default.
- W4285202619 cites W2555835967 @default.
- W4285202619 cites W2566332227 @default.
- W4285202619 cites W2586990088 @default.
- W4285202619 cites W2590252915 @default.
- W4285202619 cites W2594092543 @default.
- W4285202619 cites W2727721835 @default.
- W4285202619 cites W2738226240 @default.
- W4285202619 cites W2741385306 @default.
- W4285202619 cites W2754614310 @default.
- W4285202619 cites W2761393626 @default.
- W4285202619 cites W2769309986 @default.
- W4285202619 cites W2792853279 @default.
- W4285202619 cites W2801256342 @default.
- W4285202619 cites W2884377384 @default.
- W4285202619 cites W2887511588 @default.
- W4285202619 cites W2890952527 @default.
- W4285202619 cites W2900579232 @default.
- W4285202619 cites W2903070594 @default.
- W4285202619 cites W2905918466 @default.
- W4285202619 cites W3000716601 @default.
- W4285202619 cites W3036861272 @default.
- W4285202619 cites W3044415513 @default.
- W4285202619 cites W3097466349 @default.
- W4285202619 cites W3113180030 @default.
- W4285202619 cites W3113200130 @default.
- W4285202619 cites W3113649798 @default.
- W4285202619 cites W3156618009 @default.
- W4285202619 cites W3161060311 @default.
- W4285202619 cites W3198507157 @default.
- W4285202619 cites W4232714830 @default.
- W4285202619 cites W4239510810 @default.
- W4285202619 doi "https://doi.org/10.1109/tai.2022.3172896" @default.
- W4285202619 hasPublicationYear "2023" @default.
- W4285202619 type Work @default.
- W4285202619 citedByCount "1" @default.
- W4285202619 countsByYear W42852026192023 @default.
- W4285202619 crossrefType "journal-article" @default.
- W4285202619 hasAuthorship W4285202619A5013643897 @default.
- W4285202619 hasAuthorship W4285202619A5017741651 @default.
- W4285202619 hasAuthorship W4285202619A5043880116 @default.
- W4285202619 hasConcept C105795698 @default.
- W4285202619 hasConcept C11413529 @default.
- W4285202619 hasConcept C124101348 @default.
- W4285202619 hasConcept C127313418 @default.
- W4285202619 hasConcept C138885662 @default.
- W4285202619 hasConcept C152745839 @default.
- W4285202619 hasConcept C154945302 @default.
- W4285202619 hasConcept C165205528 @default.
- W4285202619 hasConcept C172707124 @default.
- W4285202619 hasConcept C175551986 @default.
- W4285202619 hasConcept C190839683 @default.
- W4285202619 hasConcept C199360897 @default.
- W4285202619 hasConcept C205649164 @default.
- W4285202619 hasConcept C2776401178 @default.
- W4285202619 hasConcept C2777904410 @default.
- W4285202619 hasConcept C33923547 @default.
- W4285202619 hasConcept C41008148 @default.
- W4285202619 hasConcept C41895202 @default.
- W4285202619 hasConcept C45374587 @default.
- W4285202619 hasConcept C58640448 @default.
- W4285202619 hasConcept C79403827 @default.
- W4285202619 hasConcept C89128539 @default.
- W4285202619 hasConceptScore W4285202619C105795698 @default.
- W4285202619 hasConceptScore W4285202619C11413529 @default.
- W4285202619 hasConceptScore W4285202619C124101348 @default.
- W4285202619 hasConceptScore W4285202619C127313418 @default.
- W4285202619 hasConceptScore W4285202619C138885662 @default.
- W4285202619 hasConceptScore W4285202619C152745839 @default.
- W4285202619 hasConceptScore W4285202619C154945302 @default.
- W4285202619 hasConceptScore W4285202619C165205528 @default.
- W4285202619 hasConceptScore W4285202619C172707124 @default.
- W4285202619 hasConceptScore W4285202619C175551986 @default.
- W4285202619 hasConceptScore W4285202619C190839683 @default.
- W4285202619 hasConceptScore W4285202619C199360897 @default.
- W4285202619 hasConceptScore W4285202619C205649164 @default.
- W4285202619 hasConceptScore W4285202619C2776401178 @default.
- W4285202619 hasConceptScore W4285202619C2777904410 @default.
- W4285202619 hasConceptScore W4285202619C33923547 @default.
- W4285202619 hasConceptScore W4285202619C41008148 @default.
- W4285202619 hasConceptScore W4285202619C41895202 @default.
- W4285202619 hasConceptScore W4285202619C45374587 @default.