Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285206209> ?p ?o ?g. }
- W4285206209 endingPage "22" @default.
- W4285206209 startingPage "1" @default.
- W4285206209 abstract "The emergence of newer technologies has revolutionized the biomedical sciences, which are in fact in the interface of various branches of science and engineering to find out ways to meet the challenges faced by humanity. It is now possible to make precise diagnosis and even detect the stage of diseases by using molecular biomarkers from noninvasive liquid biopsies. This is also facilitated by the use of microRNA (miRNA) profiling, the throughput novel sequencing and the machine-learning approaches, which help in determining marker DNA mutations. Certain nanoparticles such as the analysis of tissues by biophotonics and Raman spectroscopy augment the precision in disease diagnosis. The synthesis of precise and stage specific structure-based and targeted drugs is possible by using in vivo and in vitro models coupled with molecular biology techniques and pharmacogenomics. This has further been facilitated by computational models (bioinformatic tools) for omics (genomic, transcriptomics, proteomics, and metabolomic) approaches. Accurate and better drug targets are provided by small interfering RNAs (SiRNAs), which are capable of sequence specific gene silencing. It is now possible to overcome the treatment resistance by epigenetic and immune cell mechanisms and targeted therapy. The effectiveness of the drug can be detected by using organoid models (3D) of diseased (e.g., cancer) cell cultures from biopsies of primary patients. Genome editing such as CRISPR/Cas systems and RNA interference (RNAi) are playing an important role in the treatment of diseases by editing and regulating genome. Drug binding mechanisms and kinetics are understood by machine-learning algorithms. The absorption, distribution, metabolism, excretion, and toxicity as well as failure of drugs can be tracked through high-throughput screening technologies assisted computational methods and artificial intelligence. For this, in vivo models are also used. Drugs before administering to patients are tested in vitro in cell lines and patient-derived xenografts (PDXs). The immune-competent, cell line-derived xenografts (CDXs), PDXs, and genetically engineered mice (GEM) provide models for determining the effect of chemotherapeutic drugs, inhibitors, and immunotherapeutic agents. The impact of physiological variables such as oxygen, pH, and temperature that affect drug response can be determined by 3-D cell line bioreactors. The inhibitors of DNA methyltransferases (DNMT), histone deacetylases (HDACs), and anti-miRNAs can be used to target epigenetic mechanisms in different types of diseases. The epigenetic mechanisms can be modulated by certain dietary photochemicals. Nucleic acid-based therapy depends on the noncoding RNAs (ncRNAs). The immune therapy approaches use immune checkpoint inhibitors, T-cell, nonspecific immune therapies and vaccines against different diseases. G protein-coupled receptor targeting is an efficient approach to treat certain diseases. In the case of cancers, the immunopeptidomic approaches involving tumor-associated neo antigens are used for the development of anticancer vaccines and T-cell-based therapies. Emphasis on nutrition traffic to regulate the microenvironment and also differentiation and activation of immune cells is another approach in the management of diseases. It is now evident that during the last couple of years, the biomedical sciences including engineering have tremendously increased the precision in disease detection for appropriate treatment and management." @default.
- W4285206209 created "2022-07-14" @default.
- W4285206209 creator A5004563687 @default.
- W4285206209 creator A5020820395 @default.
- W4285206209 creator A5068941661 @default.
- W4285206209 date "2022-01-01" @default.
- W4285206209 modified "2023-10-17" @default.
- W4285206209 title "Introduction to Emerging Technologies in Biomedical Sciences" @default.
- W4285206209 cites W1577822803 @default.
- W4285206209 cites W1647075334 @default.
- W4285206209 cites W1698471795 @default.
- W4285206209 cites W1835592430 @default.
- W4285206209 cites W1974954833 @default.
- W4285206209 cites W1979751563 @default.
- W4285206209 cites W2011650104 @default.
- W4285206209 cites W2016292245 @default.
- W4285206209 cites W2023011112 @default.
- W4285206209 cites W2028664820 @default.
- W4285206209 cites W2035789032 @default.
- W4285206209 cites W2044585071 @default.
- W4285206209 cites W2048681341 @default.
- W4285206209 cites W2049927341 @default.
- W4285206209 cites W2052150715 @default.
- W4285206209 cites W2055451061 @default.
- W4285206209 cites W2067013502 @default.
- W4285206209 cites W2073591436 @default.
- W4285206209 cites W2096261947 @default.
- W4285206209 cites W2097219388 @default.
- W4285206209 cites W2101782563 @default.
- W4285206209 cites W2110476911 @default.
- W4285206209 cites W2119764013 @default.
- W4285206209 cites W2121725913 @default.
- W4285206209 cites W2125987139 @default.
- W4285206209 cites W2127411665 @default.
- W4285206209 cites W2164301346 @default.
- W4285206209 cites W2166595775 @default.
- W4285206209 cites W2169599832 @default.
- W4285206209 cites W2499467834 @default.
- W4285206209 cites W2517104236 @default.
- W4285206209 cites W2589830350 @default.
- W4285206209 cites W2596962109 @default.
- W4285206209 cites W2619880626 @default.
- W4285206209 cites W2744412447 @default.
- W4285206209 cites W2887782253 @default.
- W4285206209 cites W2902907835 @default.
- W4285206209 cites W2913447635 @default.
- W4285206209 cites W2926623862 @default.
- W4285206209 cites W2946157010 @default.
- W4285206209 cites W2973748748 @default.
- W4285206209 cites W2987785240 @default.
- W4285206209 cites W3003319481 @default.
- W4285206209 cites W3004255361 @default.
- W4285206209 cites W3006876324 @default.
- W4285206209 cites W3009125969 @default.
- W4285206209 cites W3010025654 @default.
- W4285206209 cites W3086007988 @default.
- W4285206209 cites W3092638691 @default.
- W4285206209 cites W3093830068 @default.
- W4285206209 cites W3111297767 @default.
- W4285206209 cites W3113205522 @default.
- W4285206209 cites W3119905834 @default.
- W4285206209 cites W3120369081 @default.
- W4285206209 cites W3123883262 @default.
- W4285206209 cites W3125955346 @default.
- W4285206209 cites W3126783260 @default.
- W4285206209 cites W3128043657 @default.
- W4285206209 cites W4236041993 @default.
- W4285206209 cites W4301896082 @default.
- W4285206209 doi "https://doi.org/10.1007/978-981-16-4345-3_1" @default.
- W4285206209 hasPublicationYear "2022" @default.
- W4285206209 type Work @default.
- W4285206209 citedByCount "1" @default.
- W4285206209 countsByYear W42852062092023 @default.
- W4285206209 crossrefType "book-chapter" @default.
- W4285206209 hasAuthorship W4285206209A5004563687 @default.
- W4285206209 hasAuthorship W4285206209A5020820395 @default.
- W4285206209 hasAuthorship W4285206209A5068941661 @default.
- W4285206209 hasConcept C104317684 @default.
- W4285206209 hasConcept C144501496 @default.
- W4285206209 hasConcept C166703698 @default.
- W4285206209 hasConcept C170734499 @default.
- W4285206209 hasConcept C32220436 @default.
- W4285206209 hasConcept C41091548 @default.
- W4285206209 hasConcept C54355233 @default.
- W4285206209 hasConcept C60644358 @default.
- W4285206209 hasConcept C67705224 @default.
- W4285206209 hasConcept C70721500 @default.
- W4285206209 hasConcept C86803240 @default.
- W4285206209 hasConcept C98108389 @default.
- W4285206209 hasConceptScore W4285206209C104317684 @default.
- W4285206209 hasConceptScore W4285206209C144501496 @default.
- W4285206209 hasConceptScore W4285206209C166703698 @default.
- W4285206209 hasConceptScore W4285206209C170734499 @default.
- W4285206209 hasConceptScore W4285206209C32220436 @default.
- W4285206209 hasConceptScore W4285206209C41091548 @default.
- W4285206209 hasConceptScore W4285206209C54355233 @default.
- W4285206209 hasConceptScore W4285206209C60644358 @default.
- W4285206209 hasConceptScore W4285206209C67705224 @default.