Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285206367> ?p ?o ?g. }
- W4285206367 endingPage "5797" @default.
- W4285206367 startingPage "5784" @default.
- W4285206367 abstract "In this article, a state-following-kernel-based reinforcement learning method with an extended disturbance observer is proposed, whose application to a missile-target interception system is considered. First, the missile-target engagement is formulated as a vertical planar pursuit–evasion problem. The target maneuver is then estimated by an extended disturbance observer in real time, which leads to an infinite-horizon optimal regulation problem. Next, utilizing the local state approximation ability of state-following kernels, the critic neural network (NN) and actor NN for synchronous iteration are constructed to calculate the approximate optimal guidance policy. The states and NN weights are proven to be uniformly ultimately bounded using the Lyapunov method. Finally, numerical simulations against different types of nonstationary targets are effectively tested, and the results highlight the role of state-following kernels in the value function and policy approximation." @default.
- W4285206367 created "2022-07-14" @default.
- W4285206367 creator A5007008999 @default.
- W4285206367 creator A5010159755 @default.
- W4285206367 creator A5044206510 @default.
- W4285206367 creator A5089621128 @default.
- W4285206367 date "2022-12-01" @default.
- W4285206367 modified "2023-10-15" @default.
- W4285206367 title "State-Following-Kernel-Based Online Reinforcement Learning Guidance Law Against Maneuvering Target" @default.
- W4285206367 cites W1486526736 @default.
- W4285206367 cites W1501849843 @default.
- W4285206367 cites W1540245649 @default.
- W4285206367 cites W1580348315 @default.
- W4285206367 cites W1601719319 @default.
- W4285206367 cites W1972773929 @default.
- W4285206367 cites W1983523797 @default.
- W4285206367 cites W2005051355 @default.
- W4285206367 cites W2009586688 @default.
- W4285206367 cites W2010586405 @default.
- W4285206367 cites W2019007960 @default.
- W4285206367 cites W2031564347 @default.
- W4285206367 cites W2043589806 @default.
- W4285206367 cites W2066538627 @default.
- W4285206367 cites W2085194340 @default.
- W4285206367 cites W2086975818 @default.
- W4285206367 cites W2111055830 @default.
- W4285206367 cites W2152161277 @default.
- W4285206367 cites W2169000745 @default.
- W4285206367 cites W2227932204 @default.
- W4285206367 cites W2310415347 @default.
- W4285206367 cites W2619255734 @default.
- W4285206367 cites W2622155592 @default.
- W4285206367 cites W2794019208 @default.
- W4285206367 cites W2800330509 @default.
- W4285206367 cites W2809896446 @default.
- W4285206367 cites W2883909295 @default.
- W4285206367 cites W2884094885 @default.
- W4285206367 cites W2884733963 @default.
- W4285206367 cites W2894802051 @default.
- W4285206367 cites W2910379982 @default.
- W4285206367 cites W2913718589 @default.
- W4285206367 cites W2945526956 @default.
- W4285206367 cites W3006579485 @default.
- W4285206367 cites W3010871414 @default.
- W4285206367 cites W3045059767 @default.
- W4285206367 cites W3047190939 @default.
- W4285206367 cites W3048735518 @default.
- W4285206367 cites W3108208986 @default.
- W4285206367 cites W3128350768 @default.
- W4285206367 cites W3136694950 @default.
- W4285206367 cites W3154290186 @default.
- W4285206367 cites W3162439934 @default.
- W4285206367 doi "https://doi.org/10.1109/taes.2022.3178770" @default.
- W4285206367 hasPublicationYear "2022" @default.
- W4285206367 type Work @default.
- W4285206367 citedByCount "3" @default.
- W4285206367 countsByYear W42852063672023 @default.
- W4285206367 crossrefType "journal-article" @default.
- W4285206367 hasAuthorship W4285206367A5007008999 @default.
- W4285206367 hasAuthorship W4285206367A5010159755 @default.
- W4285206367 hasAuthorship W4285206367A5044206510 @default.
- W4285206367 hasAuthorship W4285206367A5089621128 @default.
- W4285206367 hasConcept C11413529 @default.
- W4285206367 hasConcept C114614502 @default.
- W4285206367 hasConcept C121332964 @default.
- W4285206367 hasConcept C126255220 @default.
- W4285206367 hasConcept C127413603 @default.
- W4285206367 hasConcept C134306372 @default.
- W4285206367 hasConcept C14646407 @default.
- W4285206367 hasConcept C146978453 @default.
- W4285206367 hasConcept C154945302 @default.
- W4285206367 hasConcept C158622935 @default.
- W4285206367 hasConcept C17744445 @default.
- W4285206367 hasConcept C199539241 @default.
- W4285206367 hasConcept C2775924081 @default.
- W4285206367 hasConcept C2778464233 @default.
- W4285206367 hasConcept C2778857364 @default.
- W4285206367 hasConcept C2780704645 @default.
- W4285206367 hasConcept C3031470 @default.
- W4285206367 hasConcept C33923547 @default.
- W4285206367 hasConcept C34388435 @default.
- W4285206367 hasConcept C41008148 @default.
- W4285206367 hasConcept C47446073 @default.
- W4285206367 hasConcept C48103436 @default.
- W4285206367 hasConcept C50644808 @default.
- W4285206367 hasConcept C522053795 @default.
- W4285206367 hasConcept C60640748 @default.
- W4285206367 hasConcept C62520636 @default.
- W4285206367 hasConcept C74193536 @default.
- W4285206367 hasConcept C91575142 @default.
- W4285206367 hasConcept C91873725 @default.
- W4285206367 hasConcept C97541855 @default.
- W4285206367 hasConceptScore W4285206367C11413529 @default.
- W4285206367 hasConceptScore W4285206367C114614502 @default.
- W4285206367 hasConceptScore W4285206367C121332964 @default.
- W4285206367 hasConceptScore W4285206367C126255220 @default.
- W4285206367 hasConceptScore W4285206367C127413603 @default.
- W4285206367 hasConceptScore W4285206367C134306372 @default.