Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285207072> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4285207072 endingPage "5" @default.
- W4285207072 startingPage "1" @default.
- W4285207072 abstract "Scene classification is of great significance to understand the semantics and extract the information of high spatial resolution remote sensing image. The bag-of-visual-words( BOVW) model is an effective method to understand the semantic content of images. It is widely used in scene classification of remote sensing image.The existed BOVW models usually use single feature or multiple features (such as spectrum, texture, and shape) to describe visual words. However, when considering multiple low-level feature fusion strategies, most methods only combine them by simple accumulation or concatenation which can not fully learn the relationship between different features.In this letter, a visual bag-of-words scene classifier based on regional covariance (RCOVBOVW) is proposed. This method can naturally fuse multiple related features, and the covariance calculation itself has the filtering ability, which can also reduce the dimension of the features and have high efficiency. Experiments have been conducted on two public and challenging datasets (UC Merced and NWPU-RESISC45), and the results show that our proposed method outperforms the most state-of-the-art methods of remote sensing image scene classification." @default.
- W4285207072 created "2022-07-14" @default.
- W4285207072 creator A5000009971 @default.
- W4285207072 creator A5033250652 @default.
- W4285207072 creator A5081962162 @default.
- W4285207072 date "2022-01-01" @default.
- W4285207072 modified "2023-10-16" @default.
- W4285207072 title "Bag-of-Visual-Words Scene Classifier for Remote Sensing Image Based on Region Covariance" @default.
- W4285207072 cites W1518138188 @default.
- W4285207072 cites W1549083695 @default.
- W4285207072 cites W1980038761 @default.
- W4285207072 cites W2046017387 @default.
- W4285207072 cites W2059432853 @default.
- W4285207072 cites W2109258005 @default.
- W4285207072 cites W2123487311 @default.
- W4285207072 cites W2133848164 @default.
- W4285207072 cites W2147141800 @default.
- W4285207072 cites W2151638304 @default.
- W4285207072 cites W2294802479 @default.
- W4285207072 cites W2347115704 @default.
- W4285207072 cites W2744582969 @default.
- W4285207072 cites W2746325398 @default.
- W4285207072 cites W2783165089 @default.
- W4285207072 cites W2829067510 @default.
- W4285207072 cites W3004916592 @default.
- W4285207072 cites W3022140654 @default.
- W4285207072 cites W3080321686 @default.
- W4285207072 cites W3103856189 @default.
- W4285207072 cites W3105577662 @default.
- W4285207072 cites W3119762784 @default.
- W4285207072 cites W3138758234 @default.
- W4285207072 doi "https://doi.org/10.1109/lgrs.2022.3174167" @default.
- W4285207072 hasPublicationYear "2022" @default.
- W4285207072 type Work @default.
- W4285207072 citedByCount "1" @default.
- W4285207072 countsByYear W42852070722023 @default.
- W4285207072 crossrefType "journal-article" @default.
- W4285207072 hasAuthorship W4285207072A5000009971 @default.
- W4285207072 hasAuthorship W4285207072A5033250652 @default.
- W4285207072 hasAuthorship W4285207072A5081962162 @default.
- W4285207072 hasConcept C105795698 @default.
- W4285207072 hasConcept C115961682 @default.
- W4285207072 hasConcept C138885662 @default.
- W4285207072 hasConcept C153180895 @default.
- W4285207072 hasConcept C154945302 @default.
- W4285207072 hasConcept C1667742 @default.
- W4285207072 hasConcept C167611913 @default.
- W4285207072 hasConcept C178650346 @default.
- W4285207072 hasConcept C189391414 @default.
- W4285207072 hasConcept C2776401178 @default.
- W4285207072 hasConcept C2776429412 @default.
- W4285207072 hasConcept C31972630 @default.
- W4285207072 hasConcept C33923547 @default.
- W4285207072 hasConcept C41008148 @default.
- W4285207072 hasConcept C41895202 @default.
- W4285207072 hasConcept C52622490 @default.
- W4285207072 hasConcept C75294576 @default.
- W4285207072 hasConcept C95623464 @default.
- W4285207072 hasConceptScore W4285207072C105795698 @default.
- W4285207072 hasConceptScore W4285207072C115961682 @default.
- W4285207072 hasConceptScore W4285207072C138885662 @default.
- W4285207072 hasConceptScore W4285207072C153180895 @default.
- W4285207072 hasConceptScore W4285207072C154945302 @default.
- W4285207072 hasConceptScore W4285207072C1667742 @default.
- W4285207072 hasConceptScore W4285207072C167611913 @default.
- W4285207072 hasConceptScore W4285207072C178650346 @default.
- W4285207072 hasConceptScore W4285207072C189391414 @default.
- W4285207072 hasConceptScore W4285207072C2776401178 @default.
- W4285207072 hasConceptScore W4285207072C2776429412 @default.
- W4285207072 hasConceptScore W4285207072C31972630 @default.
- W4285207072 hasConceptScore W4285207072C33923547 @default.
- W4285207072 hasConceptScore W4285207072C41008148 @default.
- W4285207072 hasConceptScore W4285207072C41895202 @default.
- W4285207072 hasConceptScore W4285207072C52622490 @default.
- W4285207072 hasConceptScore W4285207072C75294576 @default.
- W4285207072 hasConceptScore W4285207072C95623464 @default.
- W4285207072 hasFunder F4320321001 @default.
- W4285207072 hasLocation W42852070721 @default.
- W4285207072 hasOpenAccess W4285207072 @default.
- W4285207072 hasPrimaryLocation W42852070721 @default.
- W4285207072 hasRelatedWork W2110370907 @default.
- W4285207072 hasRelatedWork W2399159263 @default.
- W4285207072 hasRelatedWork W2401094681 @default.
- W4285207072 hasRelatedWork W2546942002 @default.
- W4285207072 hasRelatedWork W2550176063 @default.
- W4285207072 hasRelatedWork W2563096758 @default.
- W4285207072 hasRelatedWork W2738461075 @default.
- W4285207072 hasRelatedWork W2742991909 @default.
- W4285207072 hasRelatedWork W2940977206 @default.
- W4285207072 hasRelatedWork W2972035100 @default.
- W4285207072 hasVolume "19" @default.
- W4285207072 isParatext "false" @default.
- W4285207072 isRetracted "false" @default.
- W4285207072 workType "article" @default.