Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285207295> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4285207295 endingPage "1370" @default.
- W4285207295 startingPage "1353" @default.
- W4285207295 abstract "Accurate prediction of ship motion is very important for ensuring marine safety, weapon control, and aircraft carrier landing, etc. Ship motion is a complex time-varying nonlinear process which is affected by many factors. Time series analysis method and many machine learning methods such as neural networks, support vector machines regression (SVR) have been widely used in ship motion predictions. However, these single models have certain limitations, so this paper adopts a multi-model prediction method. First, ensemble empirical mode decomposition (EEMD) is used to remove noise in ship motion data. Then the random forest (RF) prediction model optimized by genetic algorithm (GA), back propagation neural network (BPNN) prediction model and SVR prediction model are respectively established, and the final prediction results are obtained by results of three models. And the weights coefficients are determined by the correlation coefficients, reducing the risk of prediction and improving the reliability. The experimental results show that the proposed combined model EEMD-GARF-BPNN-SVR is superior to the single predictive model and more reliable. The mean absolute percentage error (MAPE) of the proposed model is 0.84%, but the results of the single models are greater than 1%." @default.
- W4285207295 created "2022-07-14" @default.
- W4285207295 creator A5046597133 @default.
- W4285207295 creator A5088229898 @default.
- W4285207295 date "2023-01-01" @default.
- W4285207295 modified "2023-09-26" @default.
- W4285207295 title "A Hybrid BPNN-GARF-SVR Prediction Model Based on EEMD for Ship Motion" @default.
- W4285207295 cites W1882687204 @default.
- W4285207295 cites W1992404286 @default.
- W4285207295 cites W2007221293 @default.
- W4285207295 cites W2014928429 @default.
- W4285207295 cites W2029847457 @default.
- W4285207295 cites W2120390927 @default.
- W4285207295 cites W2169921071 @default.
- W4285207295 cites W2535035978 @default.
- W4285207295 cites W2811469663 @default.
- W4285207295 cites W2884216212 @default.
- W4285207295 cites W4253554627 @default.
- W4285207295 cites W867913733 @default.
- W4285207295 doi "https://doi.org/10.32604/cmes.2022.021494" @default.
- W4285207295 hasPublicationYear "2023" @default.
- W4285207295 type Work @default.
- W4285207295 citedByCount "1" @default.
- W4285207295 countsByYear W42852072952022 @default.
- W4285207295 crossrefType "journal-article" @default.
- W4285207295 hasAuthorship W4285207295A5046597133 @default.
- W4285207295 hasAuthorship W4285207295A5088229898 @default.
- W4285207295 hasBestOaLocation W42852072951 @default.
- W4285207295 hasConcept C112633086 @default.
- W4285207295 hasConcept C119857082 @default.
- W4285207295 hasConcept C121332964 @default.
- W4285207295 hasConcept C12267149 @default.
- W4285207295 hasConcept C150217764 @default.
- W4285207295 hasConcept C153180895 @default.
- W4285207295 hasConcept C154945302 @default.
- W4285207295 hasConcept C158622935 @default.
- W4285207295 hasConcept C163258240 @default.
- W4285207295 hasConcept C169258074 @default.
- W4285207295 hasConcept C25570617 @default.
- W4285207295 hasConcept C2780092901 @default.
- W4285207295 hasConcept C41008148 @default.
- W4285207295 hasConcept C43214815 @default.
- W4285207295 hasConcept C45804977 @default.
- W4285207295 hasConcept C50644808 @default.
- W4285207295 hasConcept C62520636 @default.
- W4285207295 hasConcept C76155785 @default.
- W4285207295 hasConcept C8880873 @default.
- W4285207295 hasConceptScore W4285207295C112633086 @default.
- W4285207295 hasConceptScore W4285207295C119857082 @default.
- W4285207295 hasConceptScore W4285207295C121332964 @default.
- W4285207295 hasConceptScore W4285207295C12267149 @default.
- W4285207295 hasConceptScore W4285207295C150217764 @default.
- W4285207295 hasConceptScore W4285207295C153180895 @default.
- W4285207295 hasConceptScore W4285207295C154945302 @default.
- W4285207295 hasConceptScore W4285207295C158622935 @default.
- W4285207295 hasConceptScore W4285207295C163258240 @default.
- W4285207295 hasConceptScore W4285207295C169258074 @default.
- W4285207295 hasConceptScore W4285207295C25570617 @default.
- W4285207295 hasConceptScore W4285207295C2780092901 @default.
- W4285207295 hasConceptScore W4285207295C41008148 @default.
- W4285207295 hasConceptScore W4285207295C43214815 @default.
- W4285207295 hasConceptScore W4285207295C45804977 @default.
- W4285207295 hasConceptScore W4285207295C50644808 @default.
- W4285207295 hasConceptScore W4285207295C62520636 @default.
- W4285207295 hasConceptScore W4285207295C76155785 @default.
- W4285207295 hasConceptScore W4285207295C8880873 @default.
- W4285207295 hasIssue "2" @default.
- W4285207295 hasLocation W42852072951 @default.
- W4285207295 hasOpenAccess W4285207295 @default.
- W4285207295 hasPrimaryLocation W42852072951 @default.
- W4285207295 hasRelatedWork W2136184105 @default.
- W4285207295 hasRelatedWork W2985924212 @default.
- W4285207295 hasRelatedWork W3013515612 @default.
- W4285207295 hasRelatedWork W3195168932 @default.
- W4285207295 hasRelatedWork W3195610867 @default.
- W4285207295 hasRelatedWork W4210974274 @default.
- W4285207295 hasRelatedWork W4321636153 @default.
- W4285207295 hasRelatedWork W4377964522 @default.
- W4285207295 hasRelatedWork W4383535405 @default.
- W4285207295 hasRelatedWork W2345184372 @default.
- W4285207295 hasVolume "134" @default.
- W4285207295 isParatext "false" @default.
- W4285207295 isRetracted "false" @default.
- W4285207295 workType "article" @default.