Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285207637> ?p ?o ?g. }
- W4285207637 endingPage "12" @default.
- W4285207637 startingPage "1" @default.
- W4285207637 abstract "Prognostics and health management applications rely heavily on predicting industrial equipment’s remaining useful life (RUL). The traditional RUL prediction approaches mainly consider the nonlinear mapping relationship of time series data but rarely consider the structural information of the equipment, resulting in low prediction accuracy. In order to improve the effectiveness of RUL prediction, this paper develops a graph neural network (GNN)-based spatio-temporal fusion attention (STFA) approach. In the proposed approach, a spatial GNN is adopted to fuse spatial features and structural information of the equipment, and a modified attention mechanism is proposed to fuse temporal features. The fused features are then input to a fully connected layer for RUL prediction. Different from existing works, the proposed STFA can combine the information in time and space at the same time and utilize apriori knowledge about the equipment’s structure. Case studies on RUL prediction problems of a turbofan engine and a steam turbine are conducted. The results and comparison demonstrate the superiority of the proposed approach." @default.
- W4285207637 created "2022-07-14" @default.
- W4285207637 creator A5000044542 @default.
- W4285207637 creator A5011647709 @default.
- W4285207637 creator A5046336427 @default.
- W4285207637 creator A5081049428 @default.
- W4285207637 date "2022-01-01" @default.
- W4285207637 modified "2023-10-06" @default.
- W4285207637 title "Spatio-Temporal Fusion Attention: A Novel Approach for Remaining Useful Life Prediction Based on Graph Neural Network" @default.
- W4285207637 cites W2116341502 @default.
- W4285207637 cites W2120841219 @default.
- W4285207637 cites W2133832971 @default.
- W4285207637 cites W2143585755 @default.
- W4285207637 cites W2415594836 @default.
- W4285207637 cites W2471161958 @default.
- W4285207637 cites W2591055632 @default.
- W4285207637 cites W2601486059 @default.
- W4285207637 cites W2744067593 @default.
- W4285207637 cites W2772084711 @default.
- W4285207637 cites W2808622270 @default.
- W4285207637 cites W2902202172 @default.
- W4285207637 cites W2902700103 @default.
- W4285207637 cites W2944647284 @default.
- W4285207637 cites W2944676531 @default.
- W4285207637 cites W2965341826 @default.
- W4285207637 cites W3001566134 @default.
- W4285207637 cites W3005486352 @default.
- W4285207637 cites W3006585575 @default.
- W4285207637 cites W3009075394 @default.
- W4285207637 cites W3011803685 @default.
- W4285207637 cites W3014146531 @default.
- W4285207637 cites W3035831873 @default.
- W4285207637 cites W3123983671 @default.
- W4285207637 cites W3128962944 @default.
- W4285207637 cites W3130100540 @default.
- W4285207637 cites W3135574545 @default.
- W4285207637 cites W3154770479 @default.
- W4285207637 cites W3167907675 @default.
- W4285207637 cites W3185016559 @default.
- W4285207637 cites W3212919100 @default.
- W4285207637 cites W4200473862 @default.
- W4285207637 cites W4211206835 @default.
- W4285207637 cites W4361868024 @default.
- W4285207637 doi "https://doi.org/10.1109/tim.2022.3184352" @default.
- W4285207637 hasPublicationYear "2022" @default.
- W4285207637 type Work @default.
- W4285207637 citedByCount "10" @default.
- W4285207637 countsByYear W42852076372023 @default.
- W4285207637 crossrefType "journal-article" @default.
- W4285207637 hasAuthorship W4285207637A5000044542 @default.
- W4285207637 hasAuthorship W4285207637A5011647709 @default.
- W4285207637 hasAuthorship W4285207637A5046336427 @default.
- W4285207637 hasAuthorship W4285207637A5081049428 @default.
- W4285207637 hasConcept C110050840 @default.
- W4285207637 hasConcept C111472728 @default.
- W4285207637 hasConcept C119599485 @default.
- W4285207637 hasConcept C119857082 @default.
- W4285207637 hasConcept C124101348 @default.
- W4285207637 hasConcept C127413603 @default.
- W4285207637 hasConcept C129364497 @default.
- W4285207637 hasConcept C132525143 @default.
- W4285207637 hasConcept C138885662 @default.
- W4285207637 hasConcept C141353440 @default.
- W4285207637 hasConcept C154945302 @default.
- W4285207637 hasConcept C171146098 @default.
- W4285207637 hasConcept C41008148 @default.
- W4285207637 hasConcept C50644808 @default.
- W4285207637 hasConcept C75553542 @default.
- W4285207637 hasConcept C80444323 @default.
- W4285207637 hasConceptScore W4285207637C110050840 @default.
- W4285207637 hasConceptScore W4285207637C111472728 @default.
- W4285207637 hasConceptScore W4285207637C119599485 @default.
- W4285207637 hasConceptScore W4285207637C119857082 @default.
- W4285207637 hasConceptScore W4285207637C124101348 @default.
- W4285207637 hasConceptScore W4285207637C127413603 @default.
- W4285207637 hasConceptScore W4285207637C129364497 @default.
- W4285207637 hasConceptScore W4285207637C132525143 @default.
- W4285207637 hasConceptScore W4285207637C138885662 @default.
- W4285207637 hasConceptScore W4285207637C141353440 @default.
- W4285207637 hasConceptScore W4285207637C154945302 @default.
- W4285207637 hasConceptScore W4285207637C171146098 @default.
- W4285207637 hasConceptScore W4285207637C41008148 @default.
- W4285207637 hasConceptScore W4285207637C50644808 @default.
- W4285207637 hasConceptScore W4285207637C75553542 @default.
- W4285207637 hasConceptScore W4285207637C80444323 @default.
- W4285207637 hasFunder F4320321001 @default.
- W4285207637 hasFunder F4320326952 @default.
- W4285207637 hasFunder F4320332587 @default.
- W4285207637 hasFunder F4320335777 @default.
- W4285207637 hasLocation W42852076371 @default.
- W4285207637 hasOpenAccess W4285207637 @default.
- W4285207637 hasPrimaryLocation W42852076371 @default.
- W4285207637 hasRelatedWork W2103063562 @default.
- W4285207637 hasRelatedWork W2576071426 @default.
- W4285207637 hasRelatedWork W2794987257 @default.
- W4285207637 hasRelatedWork W2899084033 @default.
- W4285207637 hasRelatedWork W3038608135 @default.
- W4285207637 hasRelatedWork W3190366160 @default.