Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285209537> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4285209537 endingPage "689" @default.
- W4285209537 startingPage "675" @default.
- W4285209537 abstract "In manufacturing, machine selection and buffer allocation are extremely important and widely studied problems, as both can significantly affect the system performance. Solving either problem alone in a deterministic setting is already challenging. In this study, however, we simultaneously solve a high dimensional machine selection and buffer allocation problem in a highly stochastic and complex production line environment. The objective is to simultaneously select the optimal combination of machine type and buffer size allocation to maximize production throughput under limited cost and total buffer size constraints. We develop an efficient, interactive two-stage optimization method, called Machine Selection and Buffer Allocation algorithm (MSBA), that consists of a rapid machine selection (RMS) procedure and an adaptive global particle and local hyperbox search (AGPLHS) algorithm to solve the problem via simulation optimization. MSBA achieves seamless integration of RMS and AGPLHS so as to enable the simultaneous machine selection and buffer allocation to be solved efficiently. Furthermore, we compare our overall framework with three common existing methods (Genetic Algorithm, Nelder-Mead Algorithm and Adaptive Tabu Search). It is shown that our interactive two-stage framework outperforms the competing algorithms both in terms of effectiveness and efficiency. Note to Practitioners—Two important problems to solve in many production processes such as semiconductor manufacturing are machine selection and buffer allocation. Various methodologies have been utilized to solve each of the two problems individually. This work proposes an interactive two-stage simulation optimization algorithm which simultaneously solves both problems in complex, high dimensional and profoundly stochastic environments. While the most basic problem setting is a serial multi-workstation environment, complexities such as re-work stations, merging, splitting, parallel machine, and multi-product processor can be incorporated into the simulation model and solved using our proposed methodology. The methodology is user-friendly and intuitive yet adaptable enough to handle a wide range of production line environments or solve other stochastic optimization problems which require the simultaneous optimization of a mixture of binary and integer-based solutions. The numerical study, consisting of two different job-shop environments and including three benchmark algorithms, provides evidence for the efficiency of the proposed algorithm. Sensitivity analysis on user-defined parameters is also provided for the benefit of practitioners." @default.
- W4285209537 created "2022-07-14" @default.
- W4285209537 creator A5028910589 @default.
- W4285209537 creator A5080122691 @default.
- W4285209537 date "2023-01-01" @default.
- W4285209537 modified "2023-09-23" @default.
- W4285209537 title "An Interactive Two-Stage Framework for Simultaneous Machine Selection and Buffer Allocation" @default.
- W4285209537 cites W1969807725 @default.
- W4285209537 cites W1989167184 @default.
- W4285209537 cites W1996584646 @default.
- W4285209537 cites W2010847873 @default.
- W4285209537 cites W2011887696 @default.
- W4285209537 cites W2022071794 @default.
- W4285209537 cites W2032810853 @default.
- W4285209537 cites W2047177830 @default.
- W4285209537 cites W2065437968 @default.
- W4285209537 cites W2068166525 @default.
- W4285209537 cites W2080096289 @default.
- W4285209537 cites W2082791325 @default.
- W4285209537 cites W2092499104 @default.
- W4285209537 cites W2104726122 @default.
- W4285209537 cites W2106861182 @default.
- W4285209537 cites W2112277418 @default.
- W4285209537 cites W2122080348 @default.
- W4285209537 cites W2138016587 @default.
- W4285209537 cites W2169245194 @default.
- W4285209537 cites W2246512014 @default.
- W4285209537 cites W2340434655 @default.
- W4285209537 cites W2342702566 @default.
- W4285209537 cites W2508636724 @default.
- W4285209537 cites W2547003822 @default.
- W4285209537 cites W2568116117 @default.
- W4285209537 cites W2676081952 @default.
- W4285209537 cites W2765775194 @default.
- W4285209537 cites W2792256081 @default.
- W4285209537 cites W4243645092 @default.
- W4285209537 doi "https://doi.org/10.1109/tase.2022.3173641" @default.
- W4285209537 hasPublicationYear "2023" @default.
- W4285209537 type Work @default.
- W4285209537 citedByCount "2" @default.
- W4285209537 countsByYear W42852095372023 @default.
- W4285209537 crossrefType "journal-article" @default.
- W4285209537 hasAuthorship W4285209537A5028910589 @default.
- W4285209537 hasAuthorship W4285209537A5080122691 @default.
- W4285209537 hasConcept C11413529 @default.
- W4285209537 hasConcept C119857082 @default.
- W4285209537 hasConcept C123370116 @default.
- W4285209537 hasConcept C126255220 @default.
- W4285209537 hasConcept C127413603 @default.
- W4285209537 hasConcept C137836250 @default.
- W4285209537 hasConcept C154945302 @default.
- W4285209537 hasConcept C157764524 @default.
- W4285209537 hasConcept C33923547 @default.
- W4285209537 hasConcept C41008148 @default.
- W4285209537 hasConcept C555944384 @default.
- W4285209537 hasConcept C76155785 @default.
- W4285209537 hasConcept C78519656 @default.
- W4285209537 hasConcept C81917197 @default.
- W4285209537 hasConcept C8880873 @default.
- W4285209537 hasConcept C99862985 @default.
- W4285209537 hasConceptScore W4285209537C11413529 @default.
- W4285209537 hasConceptScore W4285209537C119857082 @default.
- W4285209537 hasConceptScore W4285209537C123370116 @default.
- W4285209537 hasConceptScore W4285209537C126255220 @default.
- W4285209537 hasConceptScore W4285209537C127413603 @default.
- W4285209537 hasConceptScore W4285209537C137836250 @default.
- W4285209537 hasConceptScore W4285209537C154945302 @default.
- W4285209537 hasConceptScore W4285209537C157764524 @default.
- W4285209537 hasConceptScore W4285209537C33923547 @default.
- W4285209537 hasConceptScore W4285209537C41008148 @default.
- W4285209537 hasConceptScore W4285209537C555944384 @default.
- W4285209537 hasConceptScore W4285209537C76155785 @default.
- W4285209537 hasConceptScore W4285209537C78519656 @default.
- W4285209537 hasConceptScore W4285209537C81917197 @default.
- W4285209537 hasConceptScore W4285209537C8880873 @default.
- W4285209537 hasConceptScore W4285209537C99862985 @default.
- W4285209537 hasFunder F4320322795 @default.
- W4285209537 hasIssue "1" @default.
- W4285209537 hasLocation W42852095371 @default.
- W4285209537 hasOpenAccess W4285209537 @default.
- W4285209537 hasPrimaryLocation W42852095371 @default.
- W4285209537 hasRelatedWork W128408443 @default.
- W4285209537 hasRelatedWork W183882753 @default.
- W4285209537 hasRelatedWork W2007535608 @default.
- W4285209537 hasRelatedWork W2015197460 @default.
- W4285209537 hasRelatedWork W2061323558 @default.
- W4285209537 hasRelatedWork W2129795722 @default.
- W4285209537 hasRelatedWork W2163942032 @default.
- W4285209537 hasRelatedWork W2358162608 @default.
- W4285209537 hasRelatedWork W2921180486 @default.
- W4285209537 hasRelatedWork W3166972967 @default.
- W4285209537 hasVolume "20" @default.
- W4285209537 isParatext "false" @default.
- W4285209537 isRetracted "false" @default.
- W4285209537 workType "article" @default.