Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285209985> ?p ?o ?g. }
- W4285209985 endingPage "15984" @default.
- W4285209985 startingPage "15974" @default.
- W4285209985 abstract "A novel approach for multimode fiber (MMF) curvature sensing based on the texture feature of the specklegram from the fiber facet is proposed, developed and demonstrated. Different from previously reported methods, the texture feature vector of the fiber specklegram is used as the descriptor of the curvature of the fiber. After the specklegrams from two kinds of MMF under different curvatures are recorded, the texture feature vector of each specklegram is first extracted using the uniform local binary pattern algorithm. Then, the texture feature vector is mapped into the target curvature in a nonlinear manner using a one-dimensional convolutional neural network (1D CNN). In the experiment, the model trained by the texture features of fiber specklegrams with a core diameter of 50 <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$boldsymbol {mu }text{m}$ </tex-math></inline-formula> exhibits high prediction accuracy and good generalization ability in the curvature range of 1.55-6.93 <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$text{m}^{-1}$ </tex-math></inline-formula> . In the first experiment, good recognition results are provided by the texture feature of the MMF specklegram, for which the average curvature recognition accuracy is 100%. In the second experiment, the prediction error for 91.4% of the samples in the test set is within a range of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$boldsymbol {pm }{mathbf {{0}.{1},,m}}^{mathbf {-{1}}}$ </tex-math></inline-formula> . In addition, this approach has significantly better prediction ability and robustness than the traditional approach, which processes the specklegram image directly using a two-dimensional convolutional neural network (2D CNN) for sensing. The experimental results demonstrate the fiber curvature sensing capability of the proposed method based on the analysis of texture feature using a 1D CNN." @default.
- W4285209985 created "2022-07-14" @default.
- W4285209985 creator A5006686047 @default.
- W4285209985 creator A5022103990 @default.
- W4285209985 creator A5026969543 @default.
- W4285209985 creator A5043201047 @default.
- W4285209985 creator A5055202490 @default.
- W4285209985 creator A5068500219 @default.
- W4285209985 date "2022-08-15" @default.
- W4285209985 modified "2023-10-18" @default.
- W4285209985 title "Feature Extraction Enabled Deep Learning From Specklegram for Optical Fiber Curvature Sensing" @default.
- W4285209985 cites W1987421937 @default.
- W4285209985 cites W1992546621 @default.
- W4285209985 cites W2007616317 @default.
- W4285209985 cites W2021192819 @default.
- W4285209985 cites W2033483353 @default.
- W4285209985 cites W2057240332 @default.
- W4285209985 cites W2062618615 @default.
- W4285209985 cites W2065777895 @default.
- W4285209985 cites W2075608135 @default.
- W4285209985 cites W2090485872 @default.
- W4285209985 cites W2096371830 @default.
- W4285209985 cites W2106161392 @default.
- W4285209985 cites W2163352848 @default.
- W4285209985 cites W2169472462 @default.
- W4285209985 cites W2532480849 @default.
- W4285209985 cites W2570680564 @default.
- W4285209985 cites W2737584372 @default.
- W4285209985 cites W2755932233 @default.
- W4285209985 cites W2766393433 @default.
- W4285209985 cites W2767237543 @default.
- W4285209985 cites W2809846181 @default.
- W4285209985 cites W2811047374 @default.
- W4285209985 cites W2904426207 @default.
- W4285209985 cites W2907223224 @default.
- W4285209985 cites W2955193134 @default.
- W4285209985 cites W2966718817 @default.
- W4285209985 cites W2977891168 @default.
- W4285209985 cites W3023609312 @default.
- W4285209985 cites W3029709411 @default.
- W4285209985 cites W3047028066 @default.
- W4285209985 cites W3108358071 @default.
- W4285209985 cites W3108405251 @default.
- W4285209985 cites W3181175095 @default.
- W4285209985 cites W3187074210 @default.
- W4285209985 cites W3202325142 @default.
- W4285209985 cites W4205651328 @default.
- W4285209985 cites W2044350802 @default.
- W4285209985 doi "https://doi.org/10.1109/jsen.2022.3188694" @default.
- W4285209985 hasPublicationYear "2022" @default.
- W4285209985 type Work @default.
- W4285209985 citedByCount "3" @default.
- W4285209985 countsByYear W42852099852023 @default.
- W4285209985 crossrefType "journal-article" @default.
- W4285209985 hasAuthorship W4285209985A5006686047 @default.
- W4285209985 hasAuthorship W4285209985A5022103990 @default.
- W4285209985 hasAuthorship W4285209985A5026969543 @default.
- W4285209985 hasAuthorship W4285209985A5043201047 @default.
- W4285209985 hasAuthorship W4285209985A5055202490 @default.
- W4285209985 hasAuthorship W4285209985A5068500219 @default.
- W4285209985 hasConcept C134306372 @default.
- W4285209985 hasConcept C138885662 @default.
- W4285209985 hasConcept C153180895 @default.
- W4285209985 hasConcept C154945302 @default.
- W4285209985 hasConcept C177148314 @default.
- W4285209985 hasConcept C178790620 @default.
- W4285209985 hasConcept C185592680 @default.
- W4285209985 hasConcept C195065555 @default.
- W4285209985 hasConcept C2524010 @default.
- W4285209985 hasConcept C2776401178 @default.
- W4285209985 hasConcept C33923547 @default.
- W4285209985 hasConcept C34388435 @default.
- W4285209985 hasConcept C41008148 @default.
- W4285209985 hasConcept C41895202 @default.
- W4285209985 hasConcept C519885992 @default.
- W4285209985 hasConcept C52622490 @default.
- W4285209985 hasConcept C83665646 @default.
- W4285209985 hasConceptScore W4285209985C134306372 @default.
- W4285209985 hasConceptScore W4285209985C138885662 @default.
- W4285209985 hasConceptScore W4285209985C153180895 @default.
- W4285209985 hasConceptScore W4285209985C154945302 @default.
- W4285209985 hasConceptScore W4285209985C177148314 @default.
- W4285209985 hasConceptScore W4285209985C178790620 @default.
- W4285209985 hasConceptScore W4285209985C185592680 @default.
- W4285209985 hasConceptScore W4285209985C195065555 @default.
- W4285209985 hasConceptScore W4285209985C2524010 @default.
- W4285209985 hasConceptScore W4285209985C2776401178 @default.
- W4285209985 hasConceptScore W4285209985C33923547 @default.
- W4285209985 hasConceptScore W4285209985C34388435 @default.
- W4285209985 hasConceptScore W4285209985C41008148 @default.
- W4285209985 hasConceptScore W4285209985C41895202 @default.
- W4285209985 hasConceptScore W4285209985C519885992 @default.
- W4285209985 hasConceptScore W4285209985C52622490 @default.
- W4285209985 hasConceptScore W4285209985C83665646 @default.
- W4285209985 hasFunder F4320321001 @default.
- W4285209985 hasIssue "16" @default.
- W4285209985 hasLocation W42852099851 @default.
- W4285209985 hasOpenAccess W4285209985 @default.