Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285212536> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4285212536 endingPage "1" @default.
- W4285212536 startingPage "1" @default.
- W4285212536 abstract "In the year passed, rarely a month passes without a ransomware incident being published in a newspaper or social media. In addition to the rise in the frequency of ransomware attacks, emerging attacks are very effective as they utilize sophisticated techniques to bypass existing organizational security perimeter. To tackle this issue, this paper presents “DeepWare,” which is a ransomware detection model inspired by deep learning and hardware performance counter (HPC). Different from previous works aiming to check all HPC results returned from a single timing for every running process, DeepWare carries out a simple yet effective concept of “ <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>imaging hardware performance counters with deep learning to detect ransomware</i> ,” so as to identify ransomware efficiently and effectively. To be more specific, DeepWare monitors the system-wide change in the distribution of HPC data. By imaging the HPC values and restructuring the conventional CNN model, DeepWare can address HPC’s nondeterminism issue by extracting the event-specific and event-wise behavioral features, which allows it to distinguish the ransomware activity from the benign one effectively. The experiment results across ransomware families show that the proposed DeepWare is effective at detecting different classes of ransomware with the 98.6% recall score, which is 84.41%, 60.93%, and 21% improvement over <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>RATAFIA</i> , <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>OC-SVM</i> , and <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>EGB</i> models respectively. DeepWare achieves an average MCC score of 96.8% and nearly zero false-positive rates by using just a 100 ms snapshot of HPC data. This timeliness of DeepWare is critical on the ground that organizations and individuals have the opportunity to take countermeasures in the first stage of the attack. Besides, the experiment conducted on unseen ransomware families such as CoronaVirus, Ryuk, and Dharma demonstrates that DeepWare has excellent potential to be a useful tool for zero-day attack detection." @default.
- W4285212536 created "2022-07-14" @default.
- W4285212536 creator A5047897840 @default.
- W4285212536 creator A5064046587 @default.
- W4285212536 creator A5073534245 @default.
- W4285212536 creator A5076261863 @default.
- W4285212536 date "2022-01-01" @default.
- W4285212536 modified "2023-10-16" @default.
- W4285212536 title "DeepWare: Imaging Performance Counters with Deep Learning to Detect Ransomware" @default.
- W4285212536 cites W1572063013 @default.
- W4285212536 cites W2011009207 @default.
- W4285212536 cites W2076342816 @default.
- W4285212536 cites W2144994235 @default.
- W4285212536 cites W2177710037 @default.
- W4285212536 cites W2319159802 @default.
- W4285212536 cites W2511701350 @default.
- W4285212536 cites W2513529237 @default.
- W4285212536 cites W2524919294 @default.
- W4285212536 cites W2621367454 @default.
- W4285212536 cites W2738263528 @default.
- W4285212536 cites W2766662076 @default.
- W4285212536 cites W2780577826 @default.
- W4285212536 cites W2783466036 @default.
- W4285212536 cites W2800509541 @default.
- W4285212536 cites W2807415350 @default.
- W4285212536 cites W2918753059 @default.
- W4285212536 cites W2932551155 @default.
- W4285212536 cites W2950774332 @default.
- W4285212536 cites W2951172748 @default.
- W4285212536 cites W2988809393 @default.
- W4285212536 cites W3007346474 @default.
- W4285212536 cites W3090497532 @default.
- W4285212536 cites W3111542209 @default.
- W4285212536 cites W3122507336 @default.
- W4285212536 cites W3127601194 @default.
- W4285212536 cites W3183350623 @default.
- W4285212536 cites W4247833239 @default.
- W4285212536 doi "https://doi.org/10.1109/tc.2022.3173149" @default.
- W4285212536 hasPublicationYear "2022" @default.
- W4285212536 type Work @default.
- W4285212536 citedByCount "3" @default.
- W4285212536 countsByYear W42852125362022 @default.
- W4285212536 crossrefType "journal-article" @default.
- W4285212536 hasAuthorship W4285212536A5047897840 @default.
- W4285212536 hasAuthorship W4285212536A5064046587 @default.
- W4285212536 hasAuthorship W4285212536A5073534245 @default.
- W4285212536 hasAuthorship W4285212536A5076261863 @default.
- W4285212536 hasConcept C108583219 @default.
- W4285212536 hasConcept C119857082 @default.
- W4285212536 hasConcept C121332964 @default.
- W4285212536 hasConcept C154945302 @default.
- W4285212536 hasConcept C2777667771 @default.
- W4285212536 hasConcept C2779662365 @default.
- W4285212536 hasConcept C38652104 @default.
- W4285212536 hasConcept C41008148 @default.
- W4285212536 hasConcept C541664917 @default.
- W4285212536 hasConcept C62520636 @default.
- W4285212536 hasConceptScore W4285212536C108583219 @default.
- W4285212536 hasConceptScore W4285212536C119857082 @default.
- W4285212536 hasConceptScore W4285212536C121332964 @default.
- W4285212536 hasConceptScore W4285212536C154945302 @default.
- W4285212536 hasConceptScore W4285212536C2777667771 @default.
- W4285212536 hasConceptScore W4285212536C2779662365 @default.
- W4285212536 hasConceptScore W4285212536C38652104 @default.
- W4285212536 hasConceptScore W4285212536C41008148 @default.
- W4285212536 hasConceptScore W4285212536C541664917 @default.
- W4285212536 hasConceptScore W4285212536C62520636 @default.
- W4285212536 hasFunder F4320309618 @default.
- W4285212536 hasLocation W42852125361 @default.
- W4285212536 hasOpenAccess W4285212536 @default.
- W4285212536 hasPrimaryLocation W42852125361 @default.
- W4285212536 hasRelatedWork W2731899572 @default.
- W4285212536 hasRelatedWork W2939353110 @default.
- W4285212536 hasRelatedWork W2961085424 @default.
- W4285212536 hasRelatedWork W3009238340 @default.
- W4285212536 hasRelatedWork W3046775127 @default.
- W4285212536 hasRelatedWork W3215138031 @default.
- W4285212536 hasRelatedWork W4285208911 @default.
- W4285212536 hasRelatedWork W4306674287 @default.
- W4285212536 hasRelatedWork W4321369474 @default.
- W4285212536 hasRelatedWork W4360585206 @default.
- W4285212536 isParatext "false" @default.
- W4285212536 isRetracted "false" @default.
- W4285212536 workType "article" @default.