Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285221429> ?p ?o ?g. }
- W4285221429 endingPage "2626" @default.
- W4285221429 startingPage "2617" @default.
- W4285221429 abstract "Internet-of-medical-things is the new means of monitoring patient health remotely. However, the real-time detection of anomalies in the patient data is a challenging task, especially on ECG-data. To ease the same, a novel method, NSGA-II based convolution neural network, is presented in this paper for efficient anomaly detection. In the proposed method, non-dominated sorting genetic algorithm-II is employed to obtain optimal hyper-parameters of CNN by evaluating three objective functions namely, accuracy, precision, and recall. Further, the performance validation of the proposed method is conducted on two public datasets and compared against seven state-of-the-art methods. Experimental results affirm that the proposed method outperforms the considered methods with an accuracy of 94.83% and 94.96% on MIT-BIH arrhythmia dataset and INCART dataset, respectively. Therefore, it can be claimed that the proposed method is an efficient alternative for anomaly detection." @default.
- W4285221429 created "2022-07-14" @default.
- W4285221429 creator A5002189836 @default.
- W4285221429 creator A5011200124 @default.
- W4285221429 creator A5027078848 @default.
- W4285221429 creator A5035467785 @default.
- W4285221429 creator A5043995360 @default.
- W4285221429 creator A5082491697 @default.
- W4285221429 date "2023-09-01" @default.
- W4285221429 modified "2023-09-27" @default.
- W4285221429 title "A N2CNN-Based Anomaly Detection Method for Cardiovascular Data in Cyber-Physical System" @default.
- W4285221429 cites W1523493493 @default.
- W4285221429 cites W1575935080 @default.
- W4285221429 cites W1844495464 @default.
- W4285221429 cites W1941659294 @default.
- W4285221429 cites W2045867791 @default.
- W4285221429 cites W2101331317 @default.
- W4285221429 cites W2103308415 @default.
- W4285221429 cites W2114842946 @default.
- W4285221429 cites W2117502083 @default.
- W4285221429 cites W2123808725 @default.
- W4285221429 cites W2126105956 @default.
- W4285221429 cites W2130732235 @default.
- W4285221429 cites W2135685256 @default.
- W4285221429 cites W2146071697 @default.
- W4285221429 cites W2148143831 @default.
- W4285221429 cites W2162800060 @default.
- W4285221429 cites W2174096823 @default.
- W4285221429 cites W2251133041 @default.
- W4285221429 cites W2482102801 @default.
- W4285221429 cites W2748902594 @default.
- W4285221429 cites W2751547580 @default.
- W4285221429 cites W2766047633 @default.
- W4285221429 cites W2790510783 @default.
- W4285221429 cites W2799460054 @default.
- W4285221429 cites W2800884944 @default.
- W4285221429 cites W2806884873 @default.
- W4285221429 cites W2870301986 @default.
- W4285221429 cites W2917847064 @default.
- W4285221429 cites W2921787039 @default.
- W4285221429 cites W2933923129 @default.
- W4285221429 cites W2944120507 @default.
- W4285221429 cites W2946850873 @default.
- W4285221429 cites W2952389999 @default.
- W4285221429 cites W2963733370 @default.
- W4285221429 cites W2986609444 @default.
- W4285221429 cites W3004521821 @default.
- W4285221429 cites W3015589435 @default.
- W4285221429 cites W3017403618 @default.
- W4285221429 cites W3024905798 @default.
- W4285221429 cites W3035916338 @default.
- W4285221429 cites W3049012171 @default.
- W4285221429 cites W3087300877 @default.
- W4285221429 cites W3106455851 @default.
- W4285221429 cites W3129292557 @default.
- W4285221429 cites W3134811542 @default.
- W4285221429 cites W3136339873 @default.
- W4285221429 cites W3143170718 @default.
- W4285221429 cites W3157753509 @default.
- W4285221429 cites W4200361128 @default.
- W4285221429 cites W4205884331 @default.
- W4285221429 cites W4206369693 @default.
- W4285221429 doi "https://doi.org/10.1109/tnse.2022.3188881" @default.
- W4285221429 hasPublicationYear "2023" @default.
- W4285221429 type Work @default.
- W4285221429 citedByCount "1" @default.
- W4285221429 countsByYear W42852214292023 @default.
- W4285221429 crossrefType "journal-article" @default.
- W4285221429 hasAuthorship W4285221429A5002189836 @default.
- W4285221429 hasAuthorship W4285221429A5011200124 @default.
- W4285221429 hasAuthorship W4285221429A5027078848 @default.
- W4285221429 hasAuthorship W4285221429A5035467785 @default.
- W4285221429 hasAuthorship W4285221429A5043995360 @default.
- W4285221429 hasAuthorship W4285221429A5082491697 @default.
- W4285221429 hasConcept C111696304 @default.
- W4285221429 hasConcept C111919701 @default.
- W4285221429 hasConcept C11413529 @default.
- W4285221429 hasConcept C119857082 @default.
- W4285221429 hasConcept C121332964 @default.
- W4285221429 hasConcept C124101348 @default.
- W4285221429 hasConcept C12997251 @default.
- W4285221429 hasConcept C153180895 @default.
- W4285221429 hasConcept C154945302 @default.
- W4285221429 hasConcept C179768478 @default.
- W4285221429 hasConcept C26873012 @default.
- W4285221429 hasConcept C41008148 @default.
- W4285221429 hasConcept C45347329 @default.
- W4285221429 hasConcept C50644808 @default.
- W4285221429 hasConcept C739882 @default.
- W4285221429 hasConcept C81363708 @default.
- W4285221429 hasConcept C8880873 @default.
- W4285221429 hasConceptScore W4285221429C111696304 @default.
- W4285221429 hasConceptScore W4285221429C111919701 @default.
- W4285221429 hasConceptScore W4285221429C11413529 @default.
- W4285221429 hasConceptScore W4285221429C119857082 @default.
- W4285221429 hasConceptScore W4285221429C121332964 @default.
- W4285221429 hasConceptScore W4285221429C124101348 @default.
- W4285221429 hasConceptScore W4285221429C12997251 @default.