Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285221502> ?p ?o ?g. }
- W4285221502 endingPage "1850" @default.
- W4285221502 startingPage "1838" @default.
- W4285221502 abstract "Global external fields are commonly used to manipulate micro- and nanoparticles in fluid suspension. However, the wireless external actuation has global and coupled influences in the workspace, which limit the robust, independent, and simultaneous control of multiple micro- and nanoparticles. Parametric uncertainty in the particles’ motion model and disturbance make it difficult to steer multiple particles precisely. In this paper, an adaptive tube model predictive control (MPC) scheme is proposed to simultaneously control multiple micro- and nanoparticles in fluid suspensions. The control strategy addresses coupled input actuation from the global electric fields. The unknown mobilities of the particles are continually estimated online, which enables the construction of dynamic tubes of individual particles. The recursive feasibility and the input-to-state stability (ISS) of the scheme are proven. The manipulability of the electrophoresis-based microfluidic manipulation system is quantified and analyzed. The manipulability is affected by the dimensions of the actuating electrodes, the number of particles to be simultaneously and independently controlled, and the configurations of those particles in the microfluidic device. The scalability of the lattice-shaped distributed array of electrodes is discussed. Simulation and experimental results validate the effectiveness of the controller to manipulate multiple particles precisely, independently, and simultaneously. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —To enable the enormous potential of manufacturing functional micro- and nanodevices, it is crucial to automate the steering and manipulation of multiple micro- and nanoparticles. Wireless actuation is a promising way to position those objects in fluid suspensions. However, the global and coupled influences from the wireless external actuation, the parametric uncertainty in the particles’ motion model, and the external disturbances from the fluid flow limit the robust, independent, and simultaneous control of multiple micro- and nanoparticles. In this paper, we present an adaptive tube model predictive control (MPC) scheme to simultaneously control multiple micro- and nanoparticles in fluid suspensions using electric fields. The scheme estimates the unknown mobilities of the particles, constructs dynamic tubes online, and addresses the coupled actuation from the global electric field. The manipulability of the electrophoresis-based microfluidic manipulation system is introduced, quantified, and analyzed. Those analyses give insights into designing the most effective electrode array and the efficient trajectories to achieve agile particle motions. Experimental results validate the manipulability analyses and the performance of the proposed control strategy." @default.
- W4285221502 created "2022-07-14" @default.
- W4285221502 creator A5035243524 @default.
- W4285221502 creator A5088139997 @default.
- W4285221502 date "2023-07-01" @default.
- W4285221502 modified "2023-09-27" @default.
- W4285221502 title "Adaptive Tube Model Predictive Control for Manipulating Micro- and Nanoparticles in Fluid Suspensions Under Global External Fields" @default.
- W4285221502 cites W1539694892 @default.
- W4285221502 cites W1980539043 @default.
- W4285221502 cites W1982754184 @default.
- W4285221502 cites W2006601643 @default.
- W4285221502 cites W2012707371 @default.
- W4285221502 cites W2014549826 @default.
- W4285221502 cites W2022365857 @default.
- W4285221502 cites W2045302861 @default.
- W4285221502 cites W2049410986 @default.
- W4285221502 cites W2078456003 @default.
- W4285221502 cites W2109115241 @default.
- W4285221502 cites W2136290525 @default.
- W4285221502 cites W2241352138 @default.
- W4285221502 cites W2414351964 @default.
- W4285221502 cites W2467062270 @default.
- W4285221502 cites W2517993614 @default.
- W4285221502 cites W2802559838 @default.
- W4285221502 cites W2901957321 @default.
- W4285221502 cites W2957794189 @default.
- W4285221502 cites W2966211719 @default.
- W4285221502 cites W2969991110 @default.
- W4285221502 cites W2972864268 @default.
- W4285221502 cites W2996191685 @default.
- W4285221502 cites W3007000862 @default.
- W4285221502 cites W3048206286 @default.
- W4285221502 cites W3092499619 @default.
- W4285221502 cites W3154585887 @default.
- W4285221502 cites W3194833037 @default.
- W4285221502 cites W3202432919 @default.
- W4285221502 cites W3217767993 @default.
- W4285221502 cites W4251487541 @default.
- W4285221502 cites W4254194594 @default.
- W4285221502 doi "https://doi.org/10.1109/tase.2022.3187956" @default.
- W4285221502 hasPublicationYear "2023" @default.
- W4285221502 type Work @default.
- W4285221502 citedByCount "1" @default.
- W4285221502 countsByYear W42852215022023 @default.
- W4285221502 crossrefType "journal-article" @default.
- W4285221502 hasAuthorship W4285221502A5035243524 @default.
- W4285221502 hasAuthorship W4285221502A5088139997 @default.
- W4285221502 hasConcept C105341887 @default.
- W4285221502 hasConcept C105795698 @default.
- W4285221502 hasConcept C117251300 @default.
- W4285221502 hasConcept C127413603 @default.
- W4285221502 hasConcept C133731056 @default.
- W4285221502 hasConcept C154945302 @default.
- W4285221502 hasConcept C155672457 @default.
- W4285221502 hasConcept C171250308 @default.
- W4285221502 hasConcept C172205157 @default.
- W4285221502 hasConcept C192562407 @default.
- W4285221502 hasConcept C202444582 @default.
- W4285221502 hasConcept C203479927 @default.
- W4285221502 hasConcept C2775924081 @default.
- W4285221502 hasConcept C33923547 @default.
- W4285221502 hasConcept C41008148 @default.
- W4285221502 hasConcept C47446073 @default.
- W4285221502 hasConcept C48044578 @default.
- W4285221502 hasConcept C555944384 @default.
- W4285221502 hasConcept C58581272 @default.
- W4285221502 hasConcept C5961521 @default.
- W4285221502 hasConcept C6557445 @default.
- W4285221502 hasConcept C76155785 @default.
- W4285221502 hasConcept C77088390 @default.
- W4285221502 hasConcept C8673954 @default.
- W4285221502 hasConcept C86803240 @default.
- W4285221502 hasConcept C90509273 @default.
- W4285221502 hasConceptScore W4285221502C105341887 @default.
- W4285221502 hasConceptScore W4285221502C105795698 @default.
- W4285221502 hasConceptScore W4285221502C117251300 @default.
- W4285221502 hasConceptScore W4285221502C127413603 @default.
- W4285221502 hasConceptScore W4285221502C133731056 @default.
- W4285221502 hasConceptScore W4285221502C154945302 @default.
- W4285221502 hasConceptScore W4285221502C155672457 @default.
- W4285221502 hasConceptScore W4285221502C171250308 @default.
- W4285221502 hasConceptScore W4285221502C172205157 @default.
- W4285221502 hasConceptScore W4285221502C192562407 @default.
- W4285221502 hasConceptScore W4285221502C202444582 @default.
- W4285221502 hasConceptScore W4285221502C203479927 @default.
- W4285221502 hasConceptScore W4285221502C2775924081 @default.
- W4285221502 hasConceptScore W4285221502C33923547 @default.
- W4285221502 hasConceptScore W4285221502C41008148 @default.
- W4285221502 hasConceptScore W4285221502C47446073 @default.
- W4285221502 hasConceptScore W4285221502C48044578 @default.
- W4285221502 hasConceptScore W4285221502C555944384 @default.
- W4285221502 hasConceptScore W4285221502C58581272 @default.
- W4285221502 hasConceptScore W4285221502C5961521 @default.
- W4285221502 hasConceptScore W4285221502C6557445 @default.
- W4285221502 hasConceptScore W4285221502C76155785 @default.
- W4285221502 hasConceptScore W4285221502C77088390 @default.
- W4285221502 hasConceptScore W4285221502C8673954 @default.
- W4285221502 hasConceptScore W4285221502C86803240 @default.