Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285223325> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4285223325 endingPage "64515" @default.
- W4285223325 startingPage "64504" @default.
- W4285223325 abstract "In recent years, the use of artificial neural network applications to perform object classification and event prediction has increased, mainly from research about deep learning techniques running on hardware such as GPU and FPGA. The interest in the use of neural networks extends to embedded systems, due to the development of applications in smart mobile devices, such as cell phones, drones, autonomous cars and industrial robots. But when it comes to embedded systems, it is necessary to observe the hardware limitations, such as memory, scalability and power consumption, which significantly impact the processing of a neural network. In this article, a methodology is proposed that allows to reduce a spiking neural network, applying the discrete cosine transform (DCT) and elegant pairing, contributing to the scalability of the neural network layers in hardware. The results demonstrate the effectiveness of the methodology, showing the feasibility of reducing synapses and neurons, while maintaining the correctness of the spiking neural network response." @default.
- W4285223325 created "2022-07-14" @default.
- W4285223325 creator A5017074646 @default.
- W4285223325 creator A5052053306 @default.
- W4285223325 date "2022-01-01" @default.
- W4285223325 modified "2023-10-14" @default.
- W4285223325 title "ReSNN-DCT: Methodology for Reduction of the Spiking Neural Network using Discrete Cosine Transform and Elegant Pairing" @default.
- W4285223325 cites W101771737 @default.
- W4285223325 cites W1530339963 @default.
- W4285223325 cites W1591178201 @default.
- W4285223325 cites W1594024792 @default.
- W4285223325 cites W1985940938 @default.
- W4285223325 cites W2011541295 @default.
- W4285223325 cites W2031614119 @default.
- W4285223325 cites W2048138777 @default.
- W4285223325 cites W2164653071 @default.
- W4285223325 cites W2517073324 @default.
- W4285223325 cites W2519918751 @default.
- W4285223325 cites W2554166257 @default.
- W4285223325 cites W2572990148 @default.
- W4285223325 cites W2729472098 @default.
- W4285223325 cites W2963817554 @default.
- W4285223325 doi "https://doi.org/10.1109/access.2022.3182719" @default.
- W4285223325 hasPublicationYear "2022" @default.
- W4285223325 type Work @default.
- W4285223325 citedByCount "0" @default.
- W4285223325 crossrefType "journal-article" @default.
- W4285223325 hasAuthorship W4285223325A5017074646 @default.
- W4285223325 hasAuthorship W4285223325A5052053306 @default.
- W4285223325 hasBestOaLocation W42852233251 @default.
- W4285223325 hasConcept C108583219 @default.
- W4285223325 hasConcept C111335779 @default.
- W4285223325 hasConcept C11413529 @default.
- W4285223325 hasConcept C115961682 @default.
- W4285223325 hasConcept C11731999 @default.
- W4285223325 hasConcept C118524514 @default.
- W4285223325 hasConcept C149635348 @default.
- W4285223325 hasConcept C154945302 @default.
- W4285223325 hasConcept C2221639 @default.
- W4285223325 hasConcept C2524010 @default.
- W4285223325 hasConcept C33923547 @default.
- W4285223325 hasConcept C41008148 @default.
- W4285223325 hasConcept C42935608 @default.
- W4285223325 hasConcept C48044578 @default.
- W4285223325 hasConcept C50644808 @default.
- W4285223325 hasConcept C55439883 @default.
- W4285223325 hasConcept C77088390 @default.
- W4285223325 hasConcept C9390403 @default.
- W4285223325 hasConceptScore W4285223325C108583219 @default.
- W4285223325 hasConceptScore W4285223325C111335779 @default.
- W4285223325 hasConceptScore W4285223325C11413529 @default.
- W4285223325 hasConceptScore W4285223325C115961682 @default.
- W4285223325 hasConceptScore W4285223325C11731999 @default.
- W4285223325 hasConceptScore W4285223325C118524514 @default.
- W4285223325 hasConceptScore W4285223325C149635348 @default.
- W4285223325 hasConceptScore W4285223325C154945302 @default.
- W4285223325 hasConceptScore W4285223325C2221639 @default.
- W4285223325 hasConceptScore W4285223325C2524010 @default.
- W4285223325 hasConceptScore W4285223325C33923547 @default.
- W4285223325 hasConceptScore W4285223325C41008148 @default.
- W4285223325 hasConceptScore W4285223325C42935608 @default.
- W4285223325 hasConceptScore W4285223325C48044578 @default.
- W4285223325 hasConceptScore W4285223325C50644808 @default.
- W4285223325 hasConceptScore W4285223325C55439883 @default.
- W4285223325 hasConceptScore W4285223325C77088390 @default.
- W4285223325 hasConceptScore W4285223325C9390403 @default.
- W4285223325 hasLocation W42852233251 @default.
- W4285223325 hasOpenAccess W4285223325 @default.
- W4285223325 hasPrimaryLocation W42852233251 @default.
- W4285223325 hasRelatedWork W1975010174 @default.
- W4285223325 hasRelatedWork W2056818248 @default.
- W4285223325 hasRelatedWork W2063534976 @default.
- W4285223325 hasRelatedWork W2284838239 @default.
- W4285223325 hasRelatedWork W2365716389 @default.
- W4285223325 hasRelatedWork W2391274692 @default.
- W4285223325 hasRelatedWork W2593353806 @default.
- W4285223325 hasRelatedWork W2995926156 @default.
- W4285223325 hasRelatedWork W3094426418 @default.
- W4285223325 hasRelatedWork W4361251788 @default.
- W4285223325 hasVolume "10" @default.
- W4285223325 isParatext "false" @default.
- W4285223325 isRetracted "false" @default.
- W4285223325 workType "article" @default.