Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285224733> ?p ?o ?g. }
- W4285224733 endingPage "702" @default.
- W4285224733 startingPage "690" @default.
- W4285224733 abstract "This work presents a Multiple Depot Traveling Salesman Problem with revisit period constraints. The revisit period constraints are relevant to persistent routing applications, where these constraints represent maximum time between successive visits to a target. This problem is first posed as a Mixed Integer Linear Program. The coupling constraints in the primal problem are then relaxed via Lagrangian relaxation. Minimizing the resulting Lagrangian over the primal variables can be separated into an individual subproblem for each salesman. An algorithm to solve the subproblems to near-optimality that scales well for larger instances is presented. The dual function is then maximized, where three different dual update methods are studied: the subgradient method, the ellipsoid algorithm, and a bundle algorithm. Further, a primal reconstruction algorithm is presented to reconstruct feasible solutions from the solution of the dual algorithm. The quality of these solutions are compared to the optimal solutions obtained from the CPLEX MILP optimizer. The results of extensive numerical testing show that the dual algorithm presented was computationally efficient, capable of finding high quality solutions, and scale well compared to CPLEX. Further, it was seen that the bundle method used showed better convergence than the other update methods within the dual algorithm. Note to Practitioners— This work was motivated by the problem of routing UAVs in the presence of timing constraints, specifically motivated by military applications. This problem has constraints on the frequency at which targets are visited, such that high priority targets must be visited more frequently. Similar prior work exists in the literature for a variety of routing problems for different timing or resource constraints. Techniques which are successful on one set of constraints may be less useful when applied to different constraints. We present a Lagrangian based approach to the multiple depot traveling salesman variant. The results show the utility of a Lagrangian based technique to this problem, as both the solution quality and computation time scale well with problem size. The Lagrangian based technique presented here is seen to provide, on average, high quality solutions with improved computational time over a branch-and-bound algorithm, which solves the problem exactly. While the solutions returned from the algorithm are on average of good quality, they do exhibit some variance. Alternative algorithms may give more consistent results. The technique presented in this paper is general and may be applied to other routing problems where the revisit period constraints are applied. Future research includes application of this method to dynamic environments, where the targets’ states are unknown to the UAVs except when being monitored. Further, alternative techniques can be developed for this problem and compared to both the branch-and-bound and the Lagrange algorithm presented here." @default.
- W4285224733 created "2022-07-14" @default.
- W4285224733 creator A5003956699 @default.
- W4285224733 creator A5029454978 @default.
- W4285224733 creator A5063184021 @default.
- W4285224733 creator A5086282802 @default.
- W4285224733 date "2023-01-01" @default.
- W4285224733 modified "2023-10-16" @default.
- W4285224733 title "A Lagrangian Algorithm for Multiple Depot Traveling Salesman Problem With Revisit Period Constraints" @default.
- W4285224733 cites W1979700544 @default.
- W4285224733 cites W1995813020 @default.
- W4285224733 cites W1999161039 @default.
- W4285224733 cites W2027119735 @default.
- W4285224733 cites W2061594663 @default.
- W4285224733 cites W2089754250 @default.
- W4285224733 cites W2095610932 @default.
- W4285224733 cites W2099321982 @default.
- W4285224733 cites W2103128941 @default.
- W4285224733 cites W2104361976 @default.
- W4285224733 cites W2138388627 @default.
- W4285224733 cites W2163428398 @default.
- W4285224733 cites W2408262133 @default.
- W4285224733 cites W2497712405 @default.
- W4285224733 cites W2530592706 @default.
- W4285224733 cites W2579680034 @default.
- W4285224733 cites W2593112539 @default.
- W4285224733 cites W2626431333 @default.
- W4285224733 cites W2762347333 @default.
- W4285224733 cites W2763849641 @default.
- W4285224733 cites W2798363178 @default.
- W4285224733 cites W2802483125 @default.
- W4285224733 cites W2891757954 @default.
- W4285224733 cites W2901291024 @default.
- W4285224733 cites W2923421005 @default.
- W4285224733 cites W2949866307 @default.
- W4285224733 cites W2967184883 @default.
- W4285224733 cites W2972533757 @default.
- W4285224733 cites W2990592393 @default.
- W4285224733 cites W3007423657 @default.
- W4285224733 cites W3015624198 @default.
- W4285224733 cites W3041720538 @default.
- W4285224733 cites W3045995332 @default.
- W4285224733 cites W3105197170 @default.
- W4285224733 cites W4232693667 @default.
- W4285224733 cites W4240422548 @default.
- W4285224733 cites W4250739957 @default.
- W4285224733 doi "https://doi.org/10.1109/tase.2022.3181512" @default.
- W4285224733 hasPublicationYear "2023" @default.
- W4285224733 type Work @default.
- W4285224733 citedByCount "2" @default.
- W4285224733 countsByYear W42852247332023 @default.
- W4285224733 crossrefType "journal-article" @default.
- W4285224733 hasAuthorship W4285224733A5003956699 @default.
- W4285224733 hasAuthorship W4285224733A5029454978 @default.
- W4285224733 hasAuthorship W4285224733A5063184021 @default.
- W4285224733 hasAuthorship W4285224733A5086282802 @default.
- W4285224733 hasConcept C106472803 @default.
- W4285224733 hasConcept C11413529 @default.
- W4285224733 hasConcept C126255220 @default.
- W4285224733 hasConcept C137836250 @default.
- W4285224733 hasConcept C150452318 @default.
- W4285224733 hasConcept C15744967 @default.
- W4285224733 hasConcept C158968445 @default.
- W4285224733 hasConcept C162324750 @default.
- W4285224733 hasConcept C175859090 @default.
- W4285224733 hasConcept C2776029896 @default.
- W4285224733 hasConcept C2777303404 @default.
- W4285224733 hasConcept C33923547 @default.
- W4285224733 hasConcept C41008148 @default.
- W4285224733 hasConcept C50522688 @default.
- W4285224733 hasConcept C5274546 @default.
- W4285224733 hasConcept C77805123 @default.
- W4285224733 hasConcept C91765299 @default.
- W4285224733 hasConceptScore W4285224733C106472803 @default.
- W4285224733 hasConceptScore W4285224733C11413529 @default.
- W4285224733 hasConceptScore W4285224733C126255220 @default.
- W4285224733 hasConceptScore W4285224733C137836250 @default.
- W4285224733 hasConceptScore W4285224733C150452318 @default.
- W4285224733 hasConceptScore W4285224733C15744967 @default.
- W4285224733 hasConceptScore W4285224733C158968445 @default.
- W4285224733 hasConceptScore W4285224733C162324750 @default.
- W4285224733 hasConceptScore W4285224733C175859090 @default.
- W4285224733 hasConceptScore W4285224733C2776029896 @default.
- W4285224733 hasConceptScore W4285224733C2777303404 @default.
- W4285224733 hasConceptScore W4285224733C33923547 @default.
- W4285224733 hasConceptScore W4285224733C41008148 @default.
- W4285224733 hasConceptScore W4285224733C50522688 @default.
- W4285224733 hasConceptScore W4285224733C5274546 @default.
- W4285224733 hasConceptScore W4285224733C77805123 @default.
- W4285224733 hasConceptScore W4285224733C91765299 @default.
- W4285224733 hasFunder F4320316998 @default.
- W4285224733 hasFunder F4320338279 @default.
- W4285224733 hasIssue "1" @default.
- W4285224733 hasLocation W42852247331 @default.
- W4285224733 hasOpenAccess W4285224733 @default.
- W4285224733 hasPrimaryLocation W42852247331 @default.
- W4285224733 hasRelatedWork W2007255736 @default.
- W4285224733 hasRelatedWork W2036724572 @default.