Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285225341> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4285225341 endingPage "20" @default.
- W4285225341 startingPage "1" @default.
- W4285225341 abstract "In recent days, big data is a vital role in information knowledge analysis, predicting, and manipulating process. Moreover, big data is well-known for organized extraction and analysis of large or difficult databases. Furthermore, it is widely useful in data management as compared with the conventional data processing approach. The development in big data is highly increasing gradually, such that traditional software tools faced various issues during big data handling. However, data imbalance in huge databases is a main limitation in the research area. In this paper, the Grey wolf Shuffled Shepherd Optimization Algorithm (GWSSOA)-based Deep Recurrent Neural Network (DRNN) algorithm is devised to classify the big data. In this technique, for classifying the big data a hybrid classifier, termed as Holoentropy driven Correlative Naive Bayes classifier (HCNB) and DRNN classifier is introduced. In addition, the developed hybrid classification model utilizes the MapReduce structure to solve big data issues. Here, the training process of the DRNN classifier is employed using GWSSOA. However, the developed GWSSOA is devised by integrating Shuffled Shepherd Optimization Algorithm (SSOA) and Grey Wolf Optimizer (GWO) algorithms. The developed GWSSOA-based DRNN model outperforms other big data classification techniques with regards to accuracy, specificity, and sensitivity of 0.966, 0.964, 0.870, and 209837ms." @default.
- W4285225341 created "2022-07-14" @default.
- W4285225341 creator A5005470858 @default.
- W4285225341 creator A5010127381 @default.
- W4285225341 date "2022-06-24" @default.
- W4285225341 modified "2023-09-28" @default.
- W4285225341 title "Grey Wolf Shuffled Shepherd Optimization Algorithm-Based Hybrid Deep Learning Classifier for Big Data Classification" @default.
- W4285225341 cites W1964402642 @default.
- W4285225341 cites W1990165991 @default.
- W4285225341 cites W2059591309 @default.
- W4285225341 cites W2061438946 @default.
- W4285225341 cites W2087295784 @default.
- W4285225341 cites W2110173188 @default.
- W4285225341 cites W2550797816 @default.
- W4285225341 cites W2587428921 @default.
- W4285225341 cites W2898156518 @default.
- W4285225341 cites W2902777483 @default.
- W4285225341 cites W2902834302 @default.
- W4285225341 cites W2903567470 @default.
- W4285225341 cites W2914655456 @default.
- W4285225341 cites W2922020698 @default.
- W4285225341 cites W2922396237 @default.
- W4285225341 cites W2963730760 @default.
- W4285225341 cites W2964767838 @default.
- W4285225341 cites W2973136425 @default.
- W4285225341 cites W2978611225 @default.
- W4285225341 cites W2982160266 @default.
- W4285225341 cites W2997125131 @default.
- W4285225341 cites W3007959775 @default.
- W4285225341 cites W3016947324 @default.
- W4285225341 cites W3021330142 @default.
- W4285225341 cites W3023659425 @default.
- W4285225341 cites W3192353135 @default.
- W4285225341 cites W4235072768 @default.
- W4285225341 cites W4240373286 @default.
- W4285225341 cites W4256556751 @default.
- W4285225341 cites W91088564 @default.
- W4285225341 doi "https://doi.org/10.4018/ijsir.302612" @default.
- W4285225341 hasPublicationYear "2022" @default.
- W4285225341 type Work @default.
- W4285225341 citedByCount "0" @default.
- W4285225341 crossrefType "journal-article" @default.
- W4285225341 hasAuthorship W4285225341A5005470858 @default.
- W4285225341 hasAuthorship W4285225341A5010127381 @default.
- W4285225341 hasConcept C108583219 @default.
- W4285225341 hasConcept C119857082 @default.
- W4285225341 hasConcept C12267149 @default.
- W4285225341 hasConcept C124101348 @default.
- W4285225341 hasConcept C126255220 @default.
- W4285225341 hasConcept C153180895 @default.
- W4285225341 hasConcept C154945302 @default.
- W4285225341 hasConcept C2987595161 @default.
- W4285225341 hasConcept C33923547 @default.
- W4285225341 hasConcept C41008148 @default.
- W4285225341 hasConcept C50644808 @default.
- W4285225341 hasConcept C52001869 @default.
- W4285225341 hasConcept C75684735 @default.
- W4285225341 hasConcept C95623464 @default.
- W4285225341 hasConceptScore W4285225341C108583219 @default.
- W4285225341 hasConceptScore W4285225341C119857082 @default.
- W4285225341 hasConceptScore W4285225341C12267149 @default.
- W4285225341 hasConceptScore W4285225341C124101348 @default.
- W4285225341 hasConceptScore W4285225341C126255220 @default.
- W4285225341 hasConceptScore W4285225341C153180895 @default.
- W4285225341 hasConceptScore W4285225341C154945302 @default.
- W4285225341 hasConceptScore W4285225341C2987595161 @default.
- W4285225341 hasConceptScore W4285225341C33923547 @default.
- W4285225341 hasConceptScore W4285225341C41008148 @default.
- W4285225341 hasConceptScore W4285225341C50644808 @default.
- W4285225341 hasConceptScore W4285225341C52001869 @default.
- W4285225341 hasConceptScore W4285225341C75684735 @default.
- W4285225341 hasConceptScore W4285225341C95623464 @default.
- W4285225341 hasIssue "1" @default.
- W4285225341 hasLocation W42852253411 @default.
- W4285225341 hasOpenAccess W4285225341 @default.
- W4285225341 hasPrimaryLocation W42852253411 @default.
- W4285225341 hasRelatedWork W2149078746 @default.
- W4285225341 hasRelatedWork W3014300295 @default.
- W4285225341 hasRelatedWork W3189515467 @default.
- W4285225341 hasRelatedWork W3208028783 @default.
- W4285225341 hasRelatedWork W3211546796 @default.
- W4285225341 hasRelatedWork W4223564025 @default.
- W4285225341 hasRelatedWork W4293567684 @default.
- W4285225341 hasRelatedWork W4294067781 @default.
- W4285225341 hasRelatedWork W4310989423 @default.
- W4285225341 hasRelatedWork W4312192474 @default.
- W4285225341 hasVolume "13" @default.
- W4285225341 isParatext "false" @default.
- W4285225341 isRetracted "false" @default.
- W4285225341 workType "article" @default.