Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285225724> ?p ?o ?g. }
- W4285225724 endingPage "65283" @default.
- W4285225724 startingPage "65271" @default.
- W4285225724 abstract "The data in modern educational information systems are not given enough attention and are not fully utilized. Therefore, the motivations of our study are to preliminarily explore learning behavior patterns by applying process mining to educational datasets, and construct prediction models based on previous learning behavior. The data in modern educational information systems can be used by teaching managers to analyze various aspects of the educational process from different perspectives. We prepare to choose three datasets randomly which include student number, courses and grades attributes from a university’s educational information systems. This paper firstly applies system clustering to give an overview of students’ academic performance, and roughly determines clustering number. In order to ensure the accuracy which is relevant to the analysis of students’ learning behavior patterns, a semi-biased statistic is proposed to quantitatively determine clustering number. Then, the data are clustered by fast clustering algorithm, and the clustering effect is cross-validated which is aimed at accurately analyzing the behavior patterns of student groups and using data visualization technology to visualize different student groups. Finally, the support vector machine is used to construct a classifier for predicting the learning behavior pattern, and the parameters in the support vector machine are optimized by Bayesian optimization, genetic algorithm optimization and whale optimization respectively. The research found that: 1) In the equal test of the group mean, when the significance of most courses is less than 0.05, it means that there is a significant difference among different categories. In this case, using the semi-biased statistic proposed in the paper is helpful to improve clustering effect. 2) The better the students learn, the better the clustering effect of the category which they belong to is. 3) Whale optimization algorithm works best." @default.
- W4285225724 created "2022-07-14" @default.
- W4285225724 creator A5011879589 @default.
- W4285225724 creator A5032502785 @default.
- W4285225724 creator A5074049725 @default.
- W4285225724 date "2022-01-01" @default.
- W4285225724 modified "2023-10-01" @default.
- W4285225724 title "Exploration and Visualization of Learning Behavior Patterns From the Perspective of Educational Process Mining" @default.
- W4285225724 cites W1508806467 @default.
- W4285225724 cites W1592254591 @default.
- W4285225724 cites W1972204145 @default.
- W4285225724 cites W1974364887 @default.
- W4285225724 cites W2016496267 @default.
- W4285225724 cites W2049034063 @default.
- W4285225724 cites W2070008626 @default.
- W4285225724 cites W2093914167 @default.
- W4285225724 cites W2098250644 @default.
- W4285225724 cites W2104014222 @default.
- W4285225724 cites W2108839216 @default.
- W4285225724 cites W2151108856 @default.
- W4285225724 cites W2156909104 @default.
- W4285225724 cites W2163284032 @default.
- W4285225724 cites W2164185374 @default.
- W4285225724 cites W2170917993 @default.
- W4285225724 cites W2512367924 @default.
- W4285225724 cites W2620466509 @default.
- W4285225724 cites W2734391484 @default.
- W4285225724 cites W2757875814 @default.
- W4285225724 cites W2768744498 @default.
- W4285225724 cites W2769412883 @default.
- W4285225724 cites W2775120741 @default.
- W4285225724 cites W2779552694 @default.
- W4285225724 cites W2807918604 @default.
- W4285225724 cites W2944362491 @default.
- W4285225724 cites W2951491022 @default.
- W4285225724 cites W3031733768 @default.
- W4285225724 cites W3086604635 @default.
- W4285225724 cites W3089506332 @default.
- W4285225724 cites W3127822638 @default.
- W4285225724 cites W3157753819 @default.
- W4285225724 cites W3163756852 @default.
- W4285225724 cites W4206915433 @default.
- W4285225724 cites W4212852660 @default.
- W4285225724 cites W4213130417 @default.
- W4285225724 cites W4239510810 @default.
- W4285225724 cites W4243932450 @default.
- W4285225724 doi "https://doi.org/10.1109/access.2022.3184111" @default.
- W4285225724 hasPublicationYear "2022" @default.
- W4285225724 type Work @default.
- W4285225724 citedByCount "3" @default.
- W4285225724 countsByYear W42852257242023 @default.
- W4285225724 crossrefType "journal-article" @default.
- W4285225724 hasAuthorship W4285225724A5011879589 @default.
- W4285225724 hasAuthorship W4285225724A5032502785 @default.
- W4285225724 hasAuthorship W4285225724A5074049725 @default.
- W4285225724 hasBestOaLocation W42852257241 @default.
- W4285225724 hasConcept C105795698 @default.
- W4285225724 hasConcept C111919701 @default.
- W4285225724 hasConcept C119857082 @default.
- W4285225724 hasConcept C12267149 @default.
- W4285225724 hasConcept C124101348 @default.
- W4285225724 hasConcept C12713177 @default.
- W4285225724 hasConcept C154945302 @default.
- W4285225724 hasConcept C199360897 @default.
- W4285225724 hasConcept C2522767166 @default.
- W4285225724 hasConcept C2777598771 @default.
- W4285225724 hasConcept C2780801425 @default.
- W4285225724 hasConcept C33923547 @default.
- W4285225724 hasConcept C36464697 @default.
- W4285225724 hasConcept C41008148 @default.
- W4285225724 hasConcept C52001869 @default.
- W4285225724 hasConcept C73555534 @default.
- W4285225724 hasConcept C89128539 @default.
- W4285225724 hasConcept C95623464 @default.
- W4285225724 hasConcept C98045186 @default.
- W4285225724 hasConceptScore W4285225724C105795698 @default.
- W4285225724 hasConceptScore W4285225724C111919701 @default.
- W4285225724 hasConceptScore W4285225724C119857082 @default.
- W4285225724 hasConceptScore W4285225724C12267149 @default.
- W4285225724 hasConceptScore W4285225724C124101348 @default.
- W4285225724 hasConceptScore W4285225724C12713177 @default.
- W4285225724 hasConceptScore W4285225724C154945302 @default.
- W4285225724 hasConceptScore W4285225724C199360897 @default.
- W4285225724 hasConceptScore W4285225724C2522767166 @default.
- W4285225724 hasConceptScore W4285225724C2777598771 @default.
- W4285225724 hasConceptScore W4285225724C2780801425 @default.
- W4285225724 hasConceptScore W4285225724C33923547 @default.
- W4285225724 hasConceptScore W4285225724C36464697 @default.
- W4285225724 hasConceptScore W4285225724C41008148 @default.
- W4285225724 hasConceptScore W4285225724C52001869 @default.
- W4285225724 hasConceptScore W4285225724C73555534 @default.
- W4285225724 hasConceptScore W4285225724C89128539 @default.
- W4285225724 hasConceptScore W4285225724C95623464 @default.
- W4285225724 hasConceptScore W4285225724C98045186 @default.
- W4285225724 hasFunder F4320326674 @default.
- W4285225724 hasLocation W42852257241 @default.
- W4285225724 hasOpenAccess W4285225724 @default.
- W4285225724 hasPrimaryLocation W42852257241 @default.