Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285227802> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4285227802 endingPage "111" @default.
- W4285227802 startingPage "85" @default.
- W4285227802 abstract "This chapter covers four applications: the first application is about one-step ahead forecasting of the daily global horizontal irradiation (GHI), using machine learning methods. The second application is related to one-step ahead forecasting of in-plane solar irradiance using deep learning neural networks. The third application concerns the investigation of deep learning natural networks for multistep ahead forecasting of in-plane solar irradiance. In the last application, emphasis is given to the use of neural networks for one-step ahead forecasting of daily and hourly GHI using meteorological parameters. In all, 16 examples have been described in order to help readers understand how to apply machine learning and deep learning for the forecasting of solar radiation. Four databases have been used to develop different models and all models presented have been written and developed using Python programming language." @default.
- W4285227802 created "2022-07-14" @default.
- W4285227802 creator A5005859792 @default.
- W4285227802 creator A5032046573 @default.
- W4285227802 date "2022-01-01" @default.
- W4285227802 modified "2023-10-15" @default.
- W4285227802 title "Forecasting of solar radiation using machine learning and deep learning algorithms" @default.
- W4285227802 cites W1993859423 @default.
- W4285227802 cites W1994295547 @default.
- W4285227802 cites W2056192250 @default.
- W4285227802 cites W2070826863 @default.
- W4285227802 cites W2155971453 @default.
- W4285227802 cites W2194618511 @default.
- W4285227802 cites W2425305442 @default.
- W4285227802 cites W2474623423 @default.
- W4285227802 cites W2514536448 @default.
- W4285227802 cites W2569349941 @default.
- W4285227802 cites W2787832800 @default.
- W4285227802 cites W2792326773 @default.
- W4285227802 cites W2793898103 @default.
- W4285227802 cites W2915081556 @default.
- W4285227802 cites W2968885972 @default.
- W4285227802 cites W3110443213 @default.
- W4285227802 cites W3134364980 @default.
- W4285227802 doi "https://doi.org/10.1016/b978-0-12-820641-6.00003-x" @default.
- W4285227802 hasPublicationYear "2022" @default.
- W4285227802 type Work @default.
- W4285227802 citedByCount "0" @default.
- W4285227802 crossrefType "book-chapter" @default.
- W4285227802 hasAuthorship W4285227802A5005859792 @default.
- W4285227802 hasAuthorship W4285227802A5032046573 @default.
- W4285227802 hasConcept C108583219 @default.
- W4285227802 hasConcept C11413529 @default.
- W4285227802 hasConcept C119857082 @default.
- W4285227802 hasConcept C153294291 @default.
- W4285227802 hasConcept C154945302 @default.
- W4285227802 hasConcept C199360897 @default.
- W4285227802 hasConcept C205649164 @default.
- W4285227802 hasConcept C41008148 @default.
- W4285227802 hasConcept C50644808 @default.
- W4285227802 hasConcept C519991488 @default.
- W4285227802 hasConcept C9695528 @default.
- W4285227802 hasConceptScore W4285227802C108583219 @default.
- W4285227802 hasConceptScore W4285227802C11413529 @default.
- W4285227802 hasConceptScore W4285227802C119857082 @default.
- W4285227802 hasConceptScore W4285227802C153294291 @default.
- W4285227802 hasConceptScore W4285227802C154945302 @default.
- W4285227802 hasConceptScore W4285227802C199360897 @default.
- W4285227802 hasConceptScore W4285227802C205649164 @default.
- W4285227802 hasConceptScore W4285227802C41008148 @default.
- W4285227802 hasConceptScore W4285227802C50644808 @default.
- W4285227802 hasConceptScore W4285227802C519991488 @default.
- W4285227802 hasConceptScore W4285227802C9695528 @default.
- W4285227802 hasLocation W42852278021 @default.
- W4285227802 hasOpenAccess W4285227802 @default.
- W4285227802 hasPrimaryLocation W42852278021 @default.
- W4285227802 hasRelatedWork W3014300295 @default.
- W4285227802 hasRelatedWork W3164822677 @default.
- W4285227802 hasRelatedWork W4223943233 @default.
- W4285227802 hasRelatedWork W4225161397 @default.
- W4285227802 hasRelatedWork W4250304930 @default.
- W4285227802 hasRelatedWork W4312200629 @default.
- W4285227802 hasRelatedWork W4360585206 @default.
- W4285227802 hasRelatedWork W4364306694 @default.
- W4285227802 hasRelatedWork W4380075502 @default.
- W4285227802 hasRelatedWork W4380086463 @default.
- W4285227802 isParatext "false" @default.
- W4285227802 isRetracted "false" @default.
- W4285227802 workType "book-chapter" @default.