Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285228770> ?p ?o ?g. }
- W4285228770 endingPage "45279" @default.
- W4285228770 startingPage "45266" @default.
- W4285228770 abstract "Gross domestic product (GDP) can effectively reflect the situation of economic development and resource allocation in different regions. The high-precision GDP prediction technology lays a foundation for the sustainable development of regional resources and the proposal of economic management policies. To build an accurate GDP prediction model, this paper proposed a new multi-predictor ensemble decision framework based on deep reinforcement learning. Overall modeling consists of the following steps: Firstly, GRU, TCN, and DBN are the main predictors to train three GDP forecasting models with their characteristics. Then, the DQN algorithm effectively analyses the adaptability of these three neural networks to different GDP datasets to obtain an ensemble model. Finally, by adaptive optimization of the ensemble weight coefficients of these three neural networks, the DQN algorithm got the final GDP prediction results. Through three groups of experimental cases from China, the following conclusions can be drawn: (1) the DQN algorithm can obtain excellent experimental results in ensemble learning, which effectively improves the prediction performance of single predictors by more than 10 %. (2) The ensemble multi-predictor region GDP prediction framework based on deep reinforcement learning can achieve better prediction results than 18 benchmark models. In addition, the MAPE value of the proposed model is lower than 4.2% in all cases." @default.
- W4285228770 created "2022-07-14" @default.
- W4285228770 creator A5001795606 @default.
- W4285228770 creator A5029337012 @default.
- W4285228770 creator A5063449955 @default.
- W4285228770 date "2022-01-01" @default.
- W4285228770 modified "2023-10-14" @default.
- W4285228770 title "A New Multipredictor Ensemble Decision Framework Based on Deep Reinforcement Learning for Regional GDP Prediction" @default.
- W4285228770 cites W1966194237 @default.
- W4285228770 cites W2071151783 @default.
- W4285228770 cites W2209610041 @default.
- W4285228770 cites W2463282811 @default.
- W4285228770 cites W2759669842 @default.
- W4285228770 cites W2785367375 @default.
- W4285228770 cites W2793435266 @default.
- W4285228770 cites W2794802941 @default.
- W4285228770 cites W2800183811 @default.
- W4285228770 cites W2800467185 @default.
- W4285228770 cites W2889137294 @default.
- W4285228770 cites W2894871218 @default.
- W4285228770 cites W2903524524 @default.
- W4285228770 cites W2909684636 @default.
- W4285228770 cites W2911205899 @default.
- W4285228770 cites W2920972701 @default.
- W4285228770 cites W2963164342 @default.
- W4285228770 cites W2985107936 @default.
- W4285228770 cites W3007066689 @default.
- W4285228770 cites W3024610765 @default.
- W4285228770 cites W3034294191 @default.
- W4285228770 cites W3040676006 @default.
- W4285228770 cites W3080723548 @default.
- W4285228770 cites W3091405962 @default.
- W4285228770 cites W3092047945 @default.
- W4285228770 cites W3092453270 @default.
- W4285228770 cites W3094064422 @default.
- W4285228770 cites W3118009875 @default.
- W4285228770 cites W3121997820 @default.
- W4285228770 cites W3125175503 @default.
- W4285228770 cites W3127727264 @default.
- W4285228770 cites W3129088451 @default.
- W4285228770 cites W3134345574 @default.
- W4285228770 cites W3161006054 @default.
- W4285228770 cites W3171633882 @default.
- W4285228770 cites W3173493645 @default.
- W4285228770 cites W3176306287 @default.
- W4285228770 cites W3177962568 @default.
- W4285228770 cites W3181338902 @default.
- W4285228770 cites W3186865018 @default.
- W4285228770 cites W3189424636 @default.
- W4285228770 cites W3189856571 @default.
- W4285228770 cites W3193529179 @default.
- W4285228770 cites W3196572190 @default.
- W4285228770 cites W3199797768 @default.
- W4285228770 cites W3200712390 @default.
- W4285228770 cites W3201115131 @default.
- W4285228770 cites W3202508886 @default.
- W4285228770 cites W3206641530 @default.
- W4285228770 cites W3207803682 @default.
- W4285228770 cites W3210444752 @default.
- W4285228770 cites W3212598384 @default.
- W4285228770 cites W3214643380 @default.
- W4285228770 cites W3214754412 @default.
- W4285228770 cites W3217175600 @default.
- W4285228770 cites W4200074822 @default.
- W4285228770 cites W4200412549 @default.
- W4285228770 cites W4200432631 @default.
- W4285228770 cites W4205495647 @default.
- W4285228770 cites W4210264370 @default.
- W4285228770 cites W4210696059 @default.
- W4285228770 cites W4210732327 @default.
- W4285228770 cites W4224243727 @default.
- W4285228770 cites W4226061218 @default.
- W4285228770 doi "https://doi.org/10.1109/access.2022.3170905" @default.
- W4285228770 hasPublicationYear "2022" @default.
- W4285228770 type Work @default.
- W4285228770 citedByCount "5" @default.
- W4285228770 countsByYear W42852287702022 @default.
- W4285228770 countsByYear W42852287702023 @default.
- W4285228770 crossrefType "journal-article" @default.
- W4285228770 hasAuthorship W4285228770A5001795606 @default.
- W4285228770 hasAuthorship W4285228770A5029337012 @default.
- W4285228770 hasAuthorship W4285228770A5063449955 @default.
- W4285228770 hasBestOaLocation W42852287701 @default.
- W4285228770 hasConcept C108583219 @default.
- W4285228770 hasConcept C114350782 @default.
- W4285228770 hasConcept C119857082 @default.
- W4285228770 hasConcept C119898033 @default.
- W4285228770 hasConcept C13280743 @default.
- W4285228770 hasConcept C154945302 @default.
- W4285228770 hasConcept C162324750 @default.
- W4285228770 hasConcept C177606310 @default.
- W4285228770 hasConcept C185798385 @default.
- W4285228770 hasConcept C187736073 @default.
- W4285228770 hasConcept C205649164 @default.
- W4285228770 hasConcept C41008148 @default.
- W4285228770 hasConcept C45942800 @default.
- W4285228770 hasConcept C50522688 @default.
- W4285228770 hasConcept C50644808 @default.