Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285232106> ?p ?o ?g. }
- W4285232106 endingPage "196" @default.
- W4285232106 startingPage "187" @default.
- W4285232106 abstract "The prediction of the cancer cell lines sensitivity to a specific treatment is one of the current challenges in precision medicine. With omics and pharmacogenomics data being available for over 1000 cancer cell lines, several machine learning and deep learning algorithms have been proposed for drug sensitivity prediction. However, deciding which omics data to use and which computational methods can efficiently incorporate data from different sources is the challenge which several research groups are working on. In this review, we summarize recent advances in the representative computational methods that have been developed in the last 2 years on three public datasets: COSMIC, CCLE, NCI-60. These methods aim to improve the prediction of the cancer cell lines sensitivity to a given treatment by incorporating drug's chemical information in the input or using a priori feature selection. Finally, we discuss the latest published method which aims to improve the prediction of clinical drug response of real patients starting from cancer cell line molecular profiles." @default.
- W4285232106 created "2022-07-14" @default.
- W4285232106 creator A5039975382 @default.
- W4285232106 creator A5046667102 @default.
- W4285232106 creator A5054105730 @default.
- W4285232106 creator A5057527967 @default.
- W4285232106 date "2022-01-01" @default.
- W4285232106 modified "2023-09-27" @default.
- W4285232106 title "Dissecting the Genome for Drug Response Prediction" @default.
- W4285232106 cites W1577822803 @default.
- W4285232106 cites W1605539168 @default.
- W4285232106 cites W1700449338 @default.
- W4285232106 cites W1872239493 @default.
- W4285232106 cites W1963654222 @default.
- W4285232106 cites W1964009822 @default.
- W4285232106 cites W1974368122 @default.
- W4285232106 cites W1981421409 @default.
- W4285232106 cites W1994751778 @default.
- W4285232106 cites W2012309718 @default.
- W4285232106 cites W2018663224 @default.
- W4285232106 cites W2027074912 @default.
- W4285232106 cites W2043398720 @default.
- W4285232106 cites W2080184650 @default.
- W4285232106 cites W2087312216 @default.
- W4285232106 cites W2091646496 @default.
- W4285232106 cites W2120064876 @default.
- W4285232106 cites W2125789330 @default.
- W4285232106 cites W2130072062 @default.
- W4285232106 cites W2168102484 @default.
- W4285232106 cites W2416657206 @default.
- W4285232106 cites W2461427403 @default.
- W4285232106 cites W2501016862 @default.
- W4285232106 cites W2558715006 @default.
- W4285232106 cites W2725273399 @default.
- W4285232106 cites W2742005115 @default.
- W4285232106 cites W2742007096 @default.
- W4285232106 cites W2766708596 @default.
- W4285232106 cites W2800850886 @default.
- W4285232106 cites W2807463161 @default.
- W4285232106 cites W2887685819 @default.
- W4285232106 cites W2904999046 @default.
- W4285232106 cites W2911969472 @default.
- W4285232106 cites W2924122678 @default.
- W4285232106 cites W2946834067 @default.
- W4285232106 cites W2950063908 @default.
- W4285232106 cites W2951449549 @default.
- W4285232106 cites W2965750004 @default.
- W4285232106 cites W2981742563 @default.
- W4285232106 cites W3001022866 @default.
- W4285232106 cites W3015664574 @default.
- W4285232106 cites W3033741522 @default.
- W4285232106 cites W3089142587 @default.
- W4285232106 cites W3112620286 @default.
- W4285232106 cites W3123360092 @default.
- W4285232106 cites W3142728032 @default.
- W4285232106 cites W434012021 @default.
- W4285232106 doi "https://doi.org/10.1007/978-1-0716-2095-3_7" @default.
- W4285232106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35507263" @default.
- W4285232106 hasPublicationYear "2022" @default.
- W4285232106 type Work @default.
- W4285232106 citedByCount "1" @default.
- W4285232106 countsByYear W42852321062023 @default.
- W4285232106 crossrefType "book-chapter" @default.
- W4285232106 hasAuthorship W4285232106A5039975382 @default.
- W4285232106 hasAuthorship W4285232106A5046667102 @default.
- W4285232106 hasAuthorship W4285232106A5054105730 @default.
- W4285232106 hasAuthorship W4285232106A5057527967 @default.
- W4285232106 hasBestOaLocation W42852321062 @default.
- W4285232106 hasConcept C119857082 @default.
- W4285232106 hasConcept C121608353 @default.
- W4285232106 hasConcept C124101348 @default.
- W4285232106 hasConcept C126322002 @default.
- W4285232106 hasConcept C127413603 @default.
- W4285232106 hasConcept C138885662 @default.
- W4285232106 hasConcept C142724271 @default.
- W4285232106 hasConcept C148483581 @default.
- W4285232106 hasConcept C154945302 @default.
- W4285232106 hasConcept C163763905 @default.
- W4285232106 hasConcept C170734499 @default.
- W4285232106 hasConcept C21200559 @default.
- W4285232106 hasConcept C24326235 @default.
- W4285232106 hasConcept C2776401178 @default.
- W4285232106 hasConcept C2780035454 @default.
- W4285232106 hasConcept C2994119904 @default.
- W4285232106 hasConcept C2994372470 @default.
- W4285232106 hasConcept C41008148 @default.
- W4285232106 hasConcept C41895202 @default.
- W4285232106 hasConcept C60644358 @default.
- W4285232106 hasConcept C71924100 @default.
- W4285232106 hasConcept C86803240 @default.
- W4285232106 hasConcept C96232424 @default.
- W4285232106 hasConcept C98274493 @default.
- W4285232106 hasConceptScore W4285232106C119857082 @default.
- W4285232106 hasConceptScore W4285232106C121608353 @default.
- W4285232106 hasConceptScore W4285232106C124101348 @default.
- W4285232106 hasConceptScore W4285232106C126322002 @default.
- W4285232106 hasConceptScore W4285232106C127413603 @default.
- W4285232106 hasConceptScore W4285232106C138885662 @default.