Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285238322> ?p ?o ?g. }
- W4285238322 endingPage "311" @default.
- W4285238322 startingPage "287" @default.
- W4285238322 abstract "Abstract General Land Use Cover (LUC) datasets provide a holistic picture of all the land uses and covers on Earth, without focusing specifically on any individual land use category. As opposed to the LUC maps which are only available for one date or year, reviewed in Chap. “ Global General Land Use Cover Datasets with a Single Date ”, the maps with time series allow users to study LUC change over time. Time series of general LUC datasets at a global scale is useful for understanding global patterns of LUC change and their relation with global processes such as climate change or the loss of biodiversity. MCD12Q1, also known as MODIS Land Cover, was the first time series of LUC maps to be produced on a global scale. When it was first launched in 2002, there were already many organizations and researchers working on accurate, detailed global LUC maps, although these were all one-off editions for single years. The MCD12Q1 dataset continues to be updated today, providing a series of maps for the period 2001–2018. Since the launch of MCD12Q1, many other historical series of LUC maps have been produced, especially in the last decade. This has resulted in the LUC map series covering a longer time period at higher spatial resolution. Recent efforts have focused on producing consistent time series of maps that can track LUC changes over time with low levels of uncertainty. GLCNMO (500 m), GlobCover (300 m) and GLC250 (250 m) provide time series of LUC maps at similar spatial resolutions to MCD12Q1 (500 m), although for fewer reference years. GLCNMO provides information for the years 2003, 2008 and 2013, GlobCover for 2005 and 2009 and GLC250 for 2001 and 2010. GLASS-GLC is the dataset with the coarsest spatial resolution of all those reviewed in this chapter (5 km), even though it was released very recently, in 2020. Map producers have focused on this dataset’s long timespan (1982–2015) rather than on its spatial detail. LC-CCI and CGLS-LC100 are the recently launched datasets providing a consistent series of LUC maps, which show LUC changes over time with lower levels of uncertainty. LC-CCI provides LUC information for one of the longest timespans reviewed here (1992–2018) at a spatial resolution of 300 m. CGLS-LC100 provides LUC information for a shorter period (2015–2019) but at a higher spatial resolution (100 m). In both cases, updates are scheduled. The datasets with the highest levels of spatial detail are FROM-GLC and GLC30. These were produced using highly detailed Landsat imagery, delivering time series of maps at 30 m. The FROM-GLC project even has a test LUC map at a spatial resolution of 10 m from Sentinel-2 imagery for the year 2017, making it the global dataset with the greatest spatial detail of all those reviewed in this book. Both FROM-GLC and GLC30 provide data for three different dates: the former for 2010, 2015 and 2017 and the latter for 2000, 2010 and 2020." @default.
- W4285238322 created "2022-07-14" @default.
- W4285238322 creator A5008466150 @default.
- W4285238322 creator A5025052765 @default.
- W4285238322 creator A5027129849 @default.
- W4285238322 creator A5036261491 @default.
- W4285238322 date "2022-01-01" @default.
- W4285238322 modified "2023-09-26" @default.
- W4285238322 title "Global General Land Use Cover Datasets with a Time Series of Maps" @default.
- W4285238322 cites W1974001932 @default.
- W4285238322 cites W1985864794 @default.
- W4285238322 cites W2000047929 @default.
- W4285238322 cites W2001510610 @default.
- W4285238322 cites W2003916298 @default.
- W4285238322 cites W2006929658 @default.
- W4285238322 cites W2013993188 @default.
- W4285238322 cites W2016089503 @default.
- W4285238322 cites W2025408282 @default.
- W4285238322 cites W2031841848 @default.
- W4285238322 cites W2042692910 @default.
- W4285238322 cites W2049212347 @default.
- W4285238322 cites W2056218351 @default.
- W4285238322 cites W2056811372 @default.
- W4285238322 cites W2063145744 @default.
- W4285238322 cites W2074894322 @default.
- W4285238322 cites W2075368648 @default.
- W4285238322 cites W2075620729 @default.
- W4285238322 cites W2085793179 @default.
- W4285238322 cites W2103423142 @default.
- W4285238322 cites W2121025662 @default.
- W4285238322 cites W2137010787 @default.
- W4285238322 cites W2146930334 @default.
- W4285238322 cites W2167208453 @default.
- W4285238322 cites W2243890652 @default.
- W4285238322 cites W2366156597 @default.
- W4285238322 cites W2373200034 @default.
- W4285238322 cites W2482875860 @default.
- W4285238322 cites W2535727851 @default.
- W4285238322 cites W2561841063 @default.
- W4285238322 cites W2614032618 @default.
- W4285238322 cites W2901950222 @default.
- W4285238322 cites W2905316552 @default.
- W4285238322 cites W2906848991 @default.
- W4285238322 cites W2911343260 @default.
- W4285238322 cites W2915112433 @default.
- W4285238322 cites W2916951573 @default.
- W4285238322 cites W2931985639 @default.
- W4285238322 cites W2967454906 @default.
- W4285238322 cites W3013341479 @default.
- W4285238322 cites W3146147763 @default.
- W4285238322 cites W4237190644 @default.
- W4285238322 doi "https://doi.org/10.1007/978-3-030-90998-7_15" @default.
- W4285238322 hasPublicationYear "2022" @default.
- W4285238322 type Work @default.
- W4285238322 citedByCount "0" @default.
- W4285238322 crossrefType "book-chapter" @default.
- W4285238322 hasAuthorship W4285238322A5008466150 @default.
- W4285238322 hasAuthorship W4285238322A5025052765 @default.
- W4285238322 hasAuthorship W4285238322A5027129849 @default.
- W4285238322 hasAuthorship W4285238322A5036261491 @default.
- W4285238322 hasBestOaLocation W42852383221 @default.
- W4285238322 hasConcept C100970517 @default.
- W4285238322 hasConcept C111368507 @default.
- W4285238322 hasConcept C127313418 @default.
- W4285238322 hasConcept C127413603 @default.
- W4285238322 hasConcept C132651083 @default.
- W4285238322 hasConcept C143724316 @default.
- W4285238322 hasConcept C147176958 @default.
- W4285238322 hasConcept C151730666 @default.
- W4285238322 hasConcept C199491958 @default.
- W4285238322 hasConcept C205649164 @default.
- W4285238322 hasConcept C2778755073 @default.
- W4285238322 hasConcept C2780648208 @default.
- W4285238322 hasConcept C4792198 @default.
- W4285238322 hasConcept C49204034 @default.
- W4285238322 hasConcept C58640448 @default.
- W4285238322 hasConcept C62649853 @default.
- W4285238322 hasConceptScore W4285238322C100970517 @default.
- W4285238322 hasConceptScore W4285238322C111368507 @default.
- W4285238322 hasConceptScore W4285238322C127313418 @default.
- W4285238322 hasConceptScore W4285238322C127413603 @default.
- W4285238322 hasConceptScore W4285238322C132651083 @default.
- W4285238322 hasConceptScore W4285238322C143724316 @default.
- W4285238322 hasConceptScore W4285238322C147176958 @default.
- W4285238322 hasConceptScore W4285238322C151730666 @default.
- W4285238322 hasConceptScore W4285238322C199491958 @default.
- W4285238322 hasConceptScore W4285238322C205649164 @default.
- W4285238322 hasConceptScore W4285238322C2778755073 @default.
- W4285238322 hasConceptScore W4285238322C2780648208 @default.
- W4285238322 hasConceptScore W4285238322C4792198 @default.
- W4285238322 hasConceptScore W4285238322C49204034 @default.
- W4285238322 hasConceptScore W4285238322C58640448 @default.
- W4285238322 hasConceptScore W4285238322C62649853 @default.
- W4285238322 hasFunder F4320323834 @default.
- W4285238322 hasLocation W42852383221 @default.
- W4285238322 hasOpenAccess W4285238322 @default.
- W4285238322 hasPrimaryLocation W42852383221 @default.
- W4285238322 hasRelatedWork W1684402035 @default.