Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285242215> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4285242215 endingPage "356" @default.
- W4285242215 startingPage "346" @default.
- W4285242215 abstract "Leveraging the benefits of deep-learning convolutional neural networks, we introduce a new data-driven cyber–physical system specifically designed to address the vulnerability of middleware software, namely, Robot Operating System (ROS), widely implemented in robotics in both civilian and military domains. As for our research platform, we employ the GVR-BOT unmanned ground vehicle, which is a replicate of the U.S. Army ground robot. We focus our study on the ability of the ground robot to operate under fault-tolerant conditions, making it challenging from the standpoint of cybersecurity to differentiate between legitimate and malicious operations. The GVR-BOT ground vehicle belongs to a class of differential drive ground robots and employs ROS in its onboard computer to interact with users. To facilitate deep learning, we develop a large database of images based on the network-traffic data of ROS, describing the dynamics of the GVR-BOT ground robot under legitimate and malicious operations. We use our image database to train and validate the performance of our deep-learning CNN system. Given a set of RGB/grayscale images describing the normalized time-series data representing the dynamics of the GVR-BOT ground robot, the objective of our proposed cybersecurity algorithm is to safeguard the legitimate operation of the ground robot under fault-tolerant conditions, such that any attempts to compromise its performance (e.g., malicious attacks) can be prevented within the minimum detection time. Our research indicates a promising result as our system is capable of detecting malicious attacks with high accuracy while recognizing its legitimate operations with reasonably small false-positive rates." @default.
- W4285242215 created "2022-07-14" @default.
- W4285242215 creator A5009695968 @default.
- W4285242215 creator A5050859846 @default.
- W4285242215 date "2023-01-01" @default.
- W4285242215 modified "2023-10-01" @default.
- W4285242215 title "A Data-Driven Cyber–Physical System Using Deep-Learning Convolutional Neural Networks: Study on False-Data Injection Attacks in an Unmanned Ground Vehicle Under Fault-Tolerant Conditions" @default.
- W4285242215 cites W1968152504 @default.
- W4285242215 cites W1970849078 @default.
- W4285242215 cites W2022690382 @default.
- W4285242215 cites W2052729484 @default.
- W4285242215 cites W2074772891 @default.
- W4285242215 cites W2506804851 @default.
- W4285242215 cites W2586878774 @default.
- W4285242215 cites W2592856010 @default.
- W4285242215 cites W2593733243 @default.
- W4285242215 cites W2615750389 @default.
- W4285242215 cites W2775491191 @default.
- W4285242215 cites W2889210590 @default.
- W4285242215 cites W2974142887 @default.
- W4285242215 cites W2990495437 @default.
- W4285242215 cites W3000026928 @default.
- W4285242215 cites W3002436724 @default.
- W4285242215 cites W3043093883 @default.
- W4285242215 cites W3091635810 @default.
- W4285242215 cites W3118297076 @default.
- W4285242215 cites W3118616153 @default.
- W4285242215 cites W3119087517 @default.
- W4285242215 cites W3119779989 @default.
- W4285242215 cites W3138047676 @default.
- W4285242215 cites W3210469887 @default.
- W4285242215 cites W2976895387 @default.
- W4285242215 doi "https://doi.org/10.1109/tsmc.2022.3170071" @default.
- W4285242215 hasPublicationYear "2023" @default.
- W4285242215 type Work @default.
- W4285242215 citedByCount "2" @default.
- W4285242215 countsByYear W42852422152023 @default.
- W4285242215 crossrefType "journal-article" @default.
- W4285242215 hasAuthorship W4285242215A5009695968 @default.
- W4285242215 hasAuthorship W4285242215A5050859846 @default.
- W4285242215 hasConcept C108583219 @default.
- W4285242215 hasConcept C149635348 @default.
- W4285242215 hasConcept C154945302 @default.
- W4285242215 hasConcept C2776548393 @default.
- W4285242215 hasConcept C34413123 @default.
- W4285242215 hasConcept C38652104 @default.
- W4285242215 hasConcept C41008148 @default.
- W4285242215 hasConcept C79403827 @default.
- W4285242215 hasConcept C81363708 @default.
- W4285242215 hasConcept C90509273 @default.
- W4285242215 hasConceptScore W4285242215C108583219 @default.
- W4285242215 hasConceptScore W4285242215C149635348 @default.
- W4285242215 hasConceptScore W4285242215C154945302 @default.
- W4285242215 hasConceptScore W4285242215C2776548393 @default.
- W4285242215 hasConceptScore W4285242215C34413123 @default.
- W4285242215 hasConceptScore W4285242215C38652104 @default.
- W4285242215 hasConceptScore W4285242215C41008148 @default.
- W4285242215 hasConceptScore W4285242215C79403827 @default.
- W4285242215 hasConceptScore W4285242215C81363708 @default.
- W4285242215 hasConceptScore W4285242215C90509273 @default.
- W4285242215 hasFunder F4320332447 @default.
- W4285242215 hasIssue "1" @default.
- W4285242215 hasLocation W42852422151 @default.
- W4285242215 hasOpenAccess W4285242215 @default.
- W4285242215 hasPrimaryLocation W42852422151 @default.
- W4285242215 hasRelatedWork W2731899572 @default.
- W4285242215 hasRelatedWork W2999805992 @default.
- W4285242215 hasRelatedWork W3011074480 @default.
- W4285242215 hasRelatedWork W3116150086 @default.
- W4285242215 hasRelatedWork W3133861977 @default.
- W4285242215 hasRelatedWork W3192840557 @default.
- W4285242215 hasRelatedWork W4200173597 @default.
- W4285242215 hasRelatedWork W4291897433 @default.
- W4285242215 hasRelatedWork W4312417841 @default.
- W4285242215 hasRelatedWork W4321369474 @default.
- W4285242215 hasVolume "53" @default.
- W4285242215 isParatext "false" @default.
- W4285242215 isRetracted "false" @default.
- W4285242215 workType "article" @default.