Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285247275> ?p ?o ?g. }
- W4285247275 endingPage "65727" @default.
- W4285247275 startingPage "65703" @default.
- W4285247275 abstract "Every year, phishing results in losses of billions of dollars and is a major threat to the Internet economy. Phishing attacks are now most often carried out by email. To better comprehend the existing research trend of phishing email detection, several review studies have been performed. However, it is important to assess this issue from different perspectives. None of the surveys have ever comprehensively studied the use of Natural Language Processing (NLP) techniques for detection of phishing except one that shed light on the use of NLP techniques for classification and training purposes, while exploring a few alternatives. To bridge the gap, this study aims to systematically review and synthesise research on the use of NLP for detecting phishing emails. Based on specific predefined criteria, a total of 100 research articles published between 2006 and 2022 were identified and analysed. We study the key research areas in phishing email detection using NLP, machine learning algorithms used in phishing detection email, text features in phishing emails, datasets and resources that have been used in phishing emails, and the evaluation criteria. The findings include that the main research area in phishing detection studies is feature extraction and selection, followed by methods for classifying and optimizing the detection of phishing emails. Amongst the range of classification algorithms, support vector machines (SVMs) are heavily utilised for detecting phishing emails. The most frequently used NLP techniques are found to be TF-IDF and word embeddings. Furthermore, the most commonly used datasets for benchmarking phishing email detection methods is the Nazario phishing corpus. Also, Python is the most commonly used one for phishing email detection. It is expected that the findings of this paper can be helpful for the scientific community, especially in the field of NLP application in cybersecurity problems. This survey also is unique in the sense that it relates works to their openly available tools and resources. The analysis of the presented works revealed that not much work had been performed on Arabic language phishing emails using NLP techniques. Therefore, many open issues are associated with Arabic phishing email detection." @default.
- W4285247275 created "2022-07-14" @default.
- W4285247275 creator A5016711703 @default.
- W4285247275 creator A5035852542 @default.
- W4285247275 creator A5066945309 @default.
- W4285247275 creator A5076454480 @default.
- W4285247275 date "2022-01-01" @default.
- W4285247275 modified "2023-09-30" @default.
- W4285247275 title "A Systematic Literature Review on Phishing Email Detection Using Natural Language Processing Techniques" @default.
- W4285247275 cites W1442570287 @default.
- W4285247275 cites W1480573250 @default.
- W4285247275 cites W1487092956 @default.
- W4285247275 cites W1498527206 @default.
- W4285247275 cites W1498672433 @default.
- W4285247275 cites W150462035 @default.
- W4285247275 cites W1510540210 @default.
- W4285247275 cites W1547743371 @default.
- W4285247275 cites W1567605630 @default.
- W4285247275 cites W1603920809 @default.
- W4285247275 cites W1851422430 @default.
- W4285247275 cites W1933712933 @default.
- W4285247275 cites W1964088283 @default.
- W4285247275 cites W1966979133 @default.
- W4285247275 cites W1973697585 @default.
- W4285247275 cites W1974418404 @default.
- W4285247275 cites W1975909792 @default.
- W4285247275 cites W1981856250 @default.
- W4285247275 cites W1990188874 @default.
- W4285247275 cites W1991626871 @default.
- W4285247275 cites W2005501262 @default.
- W4285247275 cites W2007878250 @default.
- W4285247275 cites W2010608681 @default.
- W4285247275 cites W2011211026 @default.
- W4285247275 cites W2015585187 @default.
- W4285247275 cites W2020648356 @default.
- W4285247275 cites W2023917709 @default.
- W4285247275 cites W2026740268 @default.
- W4285247275 cites W2028223155 @default.
- W4285247275 cites W2040161810 @default.
- W4285247275 cites W2051297055 @default.
- W4285247275 cites W2056417289 @default.
- W4285247275 cites W2064675550 @default.
- W4285247275 cites W2068185042 @default.
- W4285247275 cites W2071254787 @default.
- W4285247275 cites W2072981546 @default.
- W4285247275 cites W2075541595 @default.
- W4285247275 cites W2076462394 @default.
- W4285247275 cites W2078444243 @default.
- W4285247275 cites W2081108139 @default.
- W4285247275 cites W2091534410 @default.
- W4285247275 cites W2113247363 @default.
- W4285247275 cites W2113449956 @default.
- W4285247275 cites W2122098402 @default.
- W4285247275 cites W2134750673 @default.
- W4285247275 cites W2143017621 @default.
- W4285247275 cites W2148403395 @default.
- W4285247275 cites W2148614760 @default.
- W4285247275 cites W2153518124 @default.
- W4285247275 cites W2157155774 @default.
- W4285247275 cites W2157213381 @default.
- W4285247275 cites W2161983758 @default.
- W4285247275 cites W2166179755 @default.
- W4285247275 cites W2310347995 @default.
- W4285247275 cites W2317457890 @default.
- W4285247275 cites W2402482768 @default.
- W4285247275 cites W2466944894 @default.
- W4285247275 cites W2485701013 @default.
- W4285247275 cites W2497101805 @default.
- W4285247275 cites W2497967381 @default.
- W4285247275 cites W2514696089 @default.
- W4285247275 cites W2533061047 @default.
- W4285247275 cites W2543536327 @default.
- W4285247275 cites W2547400098 @default.
- W4285247275 cites W2563254982 @default.
- W4285247275 cites W2587201320 @default.
- W4285247275 cites W2606751384 @default.
- W4285247275 cites W2608380393 @default.
- W4285247275 cites W2618014102 @default.
- W4285247275 cites W2755914852 @default.
- W4285247275 cites W2768015477 @default.
- W4285247275 cites W2783862767 @default.
- W4285247275 cites W2786146442 @default.
- W4285247275 cites W2794284562 @default.
- W4285247275 cites W2794598542 @default.
- W4285247275 cites W2797672282 @default.
- W4285247275 cites W2807476744 @default.
- W4285247275 cites W2808538957 @default.
- W4285247275 cites W2887567311 @default.
- W4285247275 cites W2891215274 @default.
- W4285247275 cites W2900150361 @default.
- W4285247275 cites W2901292257 @default.
- W4285247275 cites W2901542879 @default.
- W4285247275 cites W2909634022 @default.
- W4285247275 cites W2911964244 @default.
- W4285247275 cites W2912581782 @default.
- W4285247275 cites W2914620184 @default.
- W4285247275 cites W2921737707 @default.
- W4285247275 cites W2944103016 @default.