Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285248944> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4285248944 endingPage "14335" @default.
- W4285248944 startingPage "14328" @default.
- W4285248944 abstract "Efficient detection of pavement cracks can effectively prevent traffic accidents and reduce pavement maintenance costs. In order to overcome the complicated and uneconomical disadvantages of traditional crack detection methods, this paper introduces a pavement crack detection network based on deep learning, which can automatically detect pavement cracks and achieves excellent detection accuracy. And the network can easily use the sensors to collect data to facilitate industrial applications. In additional, considering that most cracks have slim feature, we apply the latest Transformer module in the network to improve the effect of cracks detection. Transformer has a strong ability to capture the long-range dependence of the cracks, which enables the network to learn the context information of the crack region. Furthermore, the network also utilizes some techniques to improve the ability of algorithm to detect various cracks. Our network is trained on pavement data sets containing India, the Czech Republic and Japan. It achieved F1 scores of 0.6739 and 0.6650 on two online test sets with fewer network parameters." @default.
- W4285248944 created "2022-07-14" @default.
- W4285248944 creator A5019337921 @default.
- W4285248944 creator A5023509427 @default.
- W4285248944 creator A5091143353 @default.
- W4285248944 date "2022-07-15" @default.
- W4285248944 modified "2023-10-11" @default.
- W4285248944 title "An Improved YOLOv5 Crack Detection Method Combined With Transformer" @default.
- W4285248944 cites W1987946894 @default.
- W4285248944 cites W2058988978 @default.
- W4285248944 cites W2063413791 @default.
- W4285248944 cites W2109255472 @default.
- W4285248944 cites W2144506857 @default.
- W4285248944 cites W2565639579 @default.
- W4285248944 cites W2799323087 @default.
- W4285248944 cites W2962766617 @default.
- W4285248944 cites W2964241181 @default.
- W4285248944 cites W2970225046 @default.
- W4285248944 cites W2991626090 @default.
- W4285248944 cites W2997806675 @default.
- W4285248944 cites W3013140465 @default.
- W4285248944 cites W3014033263 @default.
- W4285248944 cites W3049453019 @default.
- W4285248944 cites W3099452838 @default.
- W4285248944 cites W3118761232 @default.
- W4285248944 cites W3124942917 @default.
- W4285248944 cites W3136219530 @default.
- W4285248944 cites W3136227916 @default.
- W4285248944 cites W3136611617 @default.
- W4285248944 cites W3137017695 @default.
- W4285248944 cites W3137274716 @default.
- W4285248944 cites W3137588588 @default.
- W4285248944 cites W3138078591 @default.
- W4285248944 cites W3138387979 @default.
- W4285248944 cites W3138867123 @default.
- W4285248944 cites W3139465810 @default.
- W4285248944 cites W3164747479 @default.
- W4285248944 cites W3167386507 @default.
- W4285248944 cites W3197086755 @default.
- W4285248944 cites W3200353526 @default.
- W4285248944 cites W3210586215 @default.
- W4285248944 cites W3214960554 @default.
- W4285248944 cites W4206754102 @default.
- W4285248944 cites W4214498892 @default.
- W4285248944 cites W4214526461 @default.
- W4285248944 cites W4226293680 @default.
- W4285248944 cites W2048908962 @default.
- W4285248944 cites W3136785150 @default.
- W4285248944 doi "https://doi.org/10.1109/jsen.2022.3181003" @default.
- W4285248944 hasPublicationYear "2022" @default.
- W4285248944 type Work @default.
- W4285248944 citedByCount "12" @default.
- W4285248944 countsByYear W42852489442022 @default.
- W4285248944 countsByYear W42852489442023 @default.
- W4285248944 crossrefType "journal-article" @default.
- W4285248944 hasAuthorship W4285248944A5019337921 @default.
- W4285248944 hasAuthorship W4285248944A5023509427 @default.
- W4285248944 hasAuthorship W4285248944A5091143353 @default.
- W4285248944 hasConcept C119599485 @default.
- W4285248944 hasConcept C127413603 @default.
- W4285248944 hasConcept C165801399 @default.
- W4285248944 hasConcept C41008148 @default.
- W4285248944 hasConcept C66322947 @default.
- W4285248944 hasConceptScore W4285248944C119599485 @default.
- W4285248944 hasConceptScore W4285248944C127413603 @default.
- W4285248944 hasConceptScore W4285248944C165801399 @default.
- W4285248944 hasConceptScore W4285248944C41008148 @default.
- W4285248944 hasConceptScore W4285248944C66322947 @default.
- W4285248944 hasFunder F4320321001 @default.
- W4285248944 hasFunder F4320323085 @default.
- W4285248944 hasFunder F4320335787 @default.
- W4285248944 hasIssue "14" @default.
- W4285248944 hasLocation W42852489441 @default.
- W4285248944 hasOpenAccess W4285248944 @default.
- W4285248944 hasPrimaryLocation W42852489441 @default.
- W4285248944 hasRelatedWork W2364848052 @default.
- W4285248944 hasRelatedWork W2365117481 @default.
- W4285248944 hasRelatedWork W2365799114 @default.
- W4285248944 hasRelatedWork W2374891679 @default.
- W4285248944 hasRelatedWork W2375939113 @default.
- W4285248944 hasRelatedWork W2380882094 @default.
- W4285248944 hasRelatedWork W2382182846 @default.
- W4285248944 hasRelatedWork W2383156279 @default.
- W4285248944 hasRelatedWork W2899084033 @default.
- W4285248944 hasRelatedWork W3157910026 @default.
- W4285248944 hasVolume "22" @default.
- W4285248944 isParatext "false" @default.
- W4285248944 isRetracted "false" @default.
- W4285248944 workType "article" @default.