Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285252436> ?p ?o ?g. }
- W4285252436 endingPage "50973" @default.
- W4285252436 startingPage "50959" @default.
- W4285252436 abstract "With the development of automated and integrated large-scale industrial systems, accurate and effective fault diagnosis methods are required to ensure the security and reliability of running mechanical equipment. Due to the time consumption and poor generalization performance of conventional machine learning-based methods, deep learning (DL)-based methods have wider application prospects due to their end-to-end architectural properties. However, in the DL models, problems such as a large number of trainable parameters, complicated hyperparameter tuning, and initialization instability increase the difficulty of model training and limit higher performance. To address these disadvantages of the DL method, we proposed a novel DL framework by applying convolutional neural networks (CNNs) based on the optimization of transfer learning (TL). TL can help the model achieve higher precision with less computational cost by transferring low-level features and fine-tuning high-level layers. In addition, data processing was implemented using continuous wavelet transformation (CWT) to convert vibration signals into 2-D images, and support vector machines (SVM) were employed to replace the fully connected layers for better classification. As a result, the proposed method was superior to the classical deep architecture trained from scratch. The performance of the proposed method is analyzed by presenting testing reports, convergence curves, and confusion matrixes. Moreover, experiments comprised of cross-domain diagnosis, simulated composite fault detection, and performance comparison on seven mechanical datasets, including bearings, gearboxes, and rotors, are presented. Based on these results, it can be observed that our method achieved the highest accuracy under various conditions." @default.
- W4285252436 created "2022-07-14" @default.
- W4285252436 creator A5011556556 @default.
- W4285252436 creator A5070623962 @default.
- W4285252436 creator A5072439910 @default.
- W4285252436 creator A5089306187 @default.
- W4285252436 date "2022-01-01" @default.
- W4285252436 modified "2023-10-14" @default.
- W4285252436 title "Intelligent Machine Fault Diagnosis Using Convolutional Neural Networks and Transfer Learning" @default.
- W4285252436 cites W2019505419 @default.
- W4285252436 cites W2060304859 @default.
- W4285252436 cites W2194775991 @default.
- W4285252436 cites W2219903032 @default.
- W4285252436 cites W2531409750 @default.
- W4285252436 cites W2554375394 @default.
- W4285252436 cites W2741636173 @default.
- W4285252436 cites W2763583057 @default.
- W4285252436 cites W2765317657 @default.
- W4285252436 cites W2767302379 @default.
- W4285252436 cites W2886924644 @default.
- W4285252436 cites W2887782657 @default.
- W4285252436 cites W2903312299 @default.
- W4285252436 cites W2939053413 @default.
- W4285252436 cites W2963446712 @default.
- W4285252436 cites W2971013993 @default.
- W4285252436 cites W2988916019 @default.
- W4285252436 cites W2998506103 @default.
- W4285252436 cites W3008309516 @default.
- W4285252436 cites W3019166713 @default.
- W4285252436 cites W3040231701 @default.
- W4285252436 cites W3043419586 @default.
- W4285252436 cites W3060850527 @default.
- W4285252436 cites W3090682168 @default.
- W4285252436 cites W3094558639 @default.
- W4285252436 cites W3119741742 @default.
- W4285252436 cites W3131148586 @default.
- W4285252436 cites W3133041601 @default.
- W4285252436 cites W3135644512 @default.
- W4285252436 cites W3136043111 @default.
- W4285252436 cites W3156863009 @default.
- W4285252436 cites W3193002911 @default.
- W4285252436 cites W3199049555 @default.
- W4285252436 cites W3199754434 @default.
- W4285252436 cites W3201502796 @default.
- W4285252436 cites W3213003106 @default.
- W4285252436 cites W3217212503 @default.
- W4285252436 cites W4200133655 @default.
- W4285252436 cites W4200193265 @default.
- W4285252436 cites W4205441678 @default.
- W4285252436 cites W4225709684 @default.
- W4285252436 doi "https://doi.org/10.1109/access.2022.3173444" @default.
- W4285252436 hasPublicationYear "2022" @default.
- W4285252436 type Work @default.
- W4285252436 citedByCount "6" @default.
- W4285252436 countsByYear W42852524362022 @default.
- W4285252436 countsByYear W42852524362023 @default.
- W4285252436 crossrefType "journal-article" @default.
- W4285252436 hasAuthorship W4285252436A5011556556 @default.
- W4285252436 hasAuthorship W4285252436A5070623962 @default.
- W4285252436 hasAuthorship W4285252436A5072439910 @default.
- W4285252436 hasAuthorship W4285252436A5089306187 @default.
- W4285252436 hasBestOaLocation W42852524361 @default.
- W4285252436 hasConcept C108583219 @default.
- W4285252436 hasConcept C114466953 @default.
- W4285252436 hasConcept C119857082 @default.
- W4285252436 hasConcept C12267149 @default.
- W4285252436 hasConcept C150899416 @default.
- W4285252436 hasConcept C153180895 @default.
- W4285252436 hasConcept C154945302 @default.
- W4285252436 hasConcept C199360897 @default.
- W4285252436 hasConcept C41008148 @default.
- W4285252436 hasConcept C50644808 @default.
- W4285252436 hasConcept C81363708 @default.
- W4285252436 hasConcept C8642999 @default.
- W4285252436 hasConceptScore W4285252436C108583219 @default.
- W4285252436 hasConceptScore W4285252436C114466953 @default.
- W4285252436 hasConceptScore W4285252436C119857082 @default.
- W4285252436 hasConceptScore W4285252436C12267149 @default.
- W4285252436 hasConceptScore W4285252436C150899416 @default.
- W4285252436 hasConceptScore W4285252436C153180895 @default.
- W4285252436 hasConceptScore W4285252436C154945302 @default.
- W4285252436 hasConceptScore W4285252436C199360897 @default.
- W4285252436 hasConceptScore W4285252436C41008148 @default.
- W4285252436 hasConceptScore W4285252436C50644808 @default.
- W4285252436 hasConceptScore W4285252436C81363708 @default.
- W4285252436 hasConceptScore W4285252436C8642999 @default.
- W4285252436 hasFunder F4320321001 @default.
- W4285252436 hasLocation W42852524361 @default.
- W4285252436 hasOpenAccess W4285252436 @default.
- W4285252436 hasPrimaryLocation W42852524361 @default.
- W4285252436 hasRelatedWork W3018421652 @default.
- W4285252436 hasRelatedWork W3021430260 @default.
- W4285252436 hasRelatedWork W3091976719 @default.
- W4285252436 hasRelatedWork W3192840557 @default.
- W4285252436 hasRelatedWork W3196543214 @default.
- W4285252436 hasRelatedWork W4220996320 @default.
- W4285252436 hasRelatedWork W4285149559 @default.
- W4285252436 hasRelatedWork W4312200629 @default.