Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285253908> ?p ?o ?g. }
- W4285253908 endingPage "168" @default.
- W4285253908 startingPage "149" @default.
- W4285253908 abstract "Modern science having embarked on the thorough and accurate interpretation of natural and physical phenomena has proven to provide successful models for the analysis of complex systems and harnessing of control over the various processes therein. Computational complexity, in this regard, comes to the foreground by providing applicable sets of ideas or integrative paradigms to recognize and understand the complex systems' intricate properties. Thus, while making the appropriate, adaptable and evolutive decisions in complex dynamic systems, it is essential to acknowledge different degrees of acceptance of the problems and construct the model it to account for its inherent constraints or limits. In this respect, while hypothesis-driven research has its inherent limitations regarding the investigation of multifactorial and heterogeneous diseases, a data-driven approach enables the examination of the way variables impact one another, which paves the way for the interpretation of dynamic and heterogeneous mechanisms of diseases. Fractional Calculus (FC), in this scope characterized by complexity, provides the applicable means and methods to solve integral, differential and integro-differential equations so FC enables the generalization of integration and differentiation possible in a flexible and consistent manner owing to its capability of reflecting the systems' actual state properties, which exhibit unpredictable variations. The fractional integration and differentiation of fractional-order is capable of providing better characterization of nonstationary and locally self-similar attributes in contrast to constant-order fractional calculus. It becomes possible to model many complex systems by fractional-order derivatives based on fractional calculus so that related syntheses can be realized in a robust and effective way. To this end, our study aims at providing an intermediary facilitating function both for the physicians and individuals by establishing accurate and robust model based on the integration of fractional-order calculus and Artificial Neural Network (ANN) for the diagnostic and differentiability predictive purposes with the diseases which display highly complex properties. The integrative approach we have proposed in this study has a multistage quality the steps of which are stated as follows: first of all, the Caputo fractional-order derivative, one of the fractional-order derivatives, has been used with two-parametric Mittag-Leffler function on the stroke dataset and cancer cell dataset, manifesting biological and neurological attributes. In this way, new fractional models with varying degrees have been established. Mittag-Leffler function, with its distributions of extensive application domains, can address irregular and heterogeneous environments for the solution of dynamic problems; thus, Mittag-Leffler function has been opted for accordingly. Following this application, the new datasets (mlf_stroke dataset and mlf_cancer cell dataset) have been obtained by employing Caputo fractional-order derivative with the two-parametric Mittag-Leffler function (α,β). In addition, classical derivative (calculus) was applied to the raw datasets; and cd_stroke dataset and cd_cancer cell dataset were obtained. Secondly, the performance of the new datasets as obtained from the Caputo fractional derivative with the two-parametric Mittag-Leffler function, the datasets obtained from the classical derivative application and the raw datasets have been compared by using feed forward back propagation (FFBP) algorithm, one of the algorithms of ANN (along with accuracy rate, sensitivity, precision, specificity, F1-score, multiclass classification (MCC), ROC curve). Based on the accuracy rate results obtained from the application with FFBP, the Caputo fractional-order derivative model that is most suitable for the diseases has been generated. The experimental results obtained demonstrate the applicability of the complex-systems-grounded paradigm scheme as proposed through this study, which has no existing counterpart. The integrative multi-stage method based on mathematical-informed framework with comparative differentiability prediction analyses can point toward a new direction in the various areas of applied sciences to address formidable challenges of critical decision making and management of chaotic processes in different complex dynamic systems." @default.
- W4285253908 created "2022-07-14" @default.
- W4285253908 creator A5030756029 @default.
- W4285253908 creator A5074690407 @default.
- W4285253908 date "2022-01-01" @default.
- W4285253908 modified "2023-10-14" @default.
- W4285253908 title "Computational fractional-order calculus and classical calculus AI for comparative differentiability prediction analyses of complex-systems-grounded paradigm" @default.
- W4285253908 cites W1696467154 @default.
- W4285253908 cites W1963939054 @default.
- W4285253908 cites W1986654746 @default.
- W4285253908 cites W1987106223 @default.
- W4285253908 cites W1992828457 @default.
- W4285253908 cites W1994916853 @default.
- W4285253908 cites W2020559479 @default.
- W4285253908 cites W2028295862 @default.
- W4285253908 cites W2047140957 @default.
- W4285253908 cites W2060650941 @default.
- W4285253908 cites W2061209223 @default.
- W4285253908 cites W2080109200 @default.
- W4285253908 cites W2083474188 @default.
- W4285253908 cites W2111349079 @default.
- W4285253908 cites W2149522752 @default.
- W4285253908 cites W2194366276 @default.
- W4285253908 cites W2235409271 @default.
- W4285253908 cites W2304687139 @default.
- W4285253908 cites W2329744502 @default.
- W4285253908 cites W2525748878 @default.
- W4285253908 cites W2777580413 @default.
- W4285253908 cites W2891275479 @default.
- W4285253908 cites W2905542394 @default.
- W4285253908 cites W2912848012 @default.
- W4285253908 cites W2938607640 @default.
- W4285253908 cites W2944712254 @default.
- W4285253908 cites W2948463461 @default.
- W4285253908 cites W2971845690 @default.
- W4285253908 cites W2985942842 @default.
- W4285253908 cites W2991096017 @default.
- W4285253908 cites W3010908817 @default.
- W4285253908 cites W3021822319 @default.
- W4285253908 cites W3047250545 @default.
- W4285253908 cites W3086198729 @default.
- W4285253908 cites W3118558556 @default.
- W4285253908 cites W3120189783 @default.
- W4285253908 cites W3147943130 @default.
- W4285253908 cites W4238663582 @default.
- W4285253908 doi "https://doi.org/10.1016/b978-0-323-90032-4.00006-7" @default.
- W4285253908 hasPublicationYear "2022" @default.
- W4285253908 type Work @default.
- W4285253908 citedByCount "2" @default.
- W4285253908 countsByYear W42852539082023 @default.
- W4285253908 crossrefType "book-chapter" @default.
- W4285253908 hasAuthorship W4285253908A5030756029 @default.
- W4285253908 hasAuthorship W4285253908A5074690407 @default.
- W4285253908 hasConcept C127413603 @default.
- W4285253908 hasConcept C134306372 @default.
- W4285253908 hasConcept C146978453 @default.
- W4285253908 hasConcept C154249771 @default.
- W4285253908 hasConcept C154945302 @default.
- W4285253908 hasConcept C177148314 @default.
- W4285253908 hasConcept C199343813 @default.
- W4285253908 hasConcept C199360897 @default.
- W4285253908 hasConcept C202444582 @default.
- W4285253908 hasConcept C202615002 @default.
- W4285253908 hasConcept C2777686260 @default.
- W4285253908 hasConcept C2778012447 @default.
- W4285253908 hasConcept C2780801425 @default.
- W4285253908 hasConcept C28826006 @default.
- W4285253908 hasConcept C33923547 @default.
- W4285253908 hasConcept C41008148 @default.
- W4285253908 hasConcept C47822265 @default.
- W4285253908 hasConcept C527412718 @default.
- W4285253908 hasConcept C56802139 @default.
- W4285253908 hasConcept C71924100 @default.
- W4285253908 hasConcept C80444323 @default.
- W4285253908 hasConcept C93226319 @default.
- W4285253908 hasConceptScore W4285253908C127413603 @default.
- W4285253908 hasConceptScore W4285253908C134306372 @default.
- W4285253908 hasConceptScore W4285253908C146978453 @default.
- W4285253908 hasConceptScore W4285253908C154249771 @default.
- W4285253908 hasConceptScore W4285253908C154945302 @default.
- W4285253908 hasConceptScore W4285253908C177148314 @default.
- W4285253908 hasConceptScore W4285253908C199343813 @default.
- W4285253908 hasConceptScore W4285253908C199360897 @default.
- W4285253908 hasConceptScore W4285253908C202444582 @default.
- W4285253908 hasConceptScore W4285253908C202615002 @default.
- W4285253908 hasConceptScore W4285253908C2777686260 @default.
- W4285253908 hasConceptScore W4285253908C2778012447 @default.
- W4285253908 hasConceptScore W4285253908C2780801425 @default.
- W4285253908 hasConceptScore W4285253908C28826006 @default.
- W4285253908 hasConceptScore W4285253908C33923547 @default.
- W4285253908 hasConceptScore W4285253908C41008148 @default.
- W4285253908 hasConceptScore W4285253908C47822265 @default.
- W4285253908 hasConceptScore W4285253908C527412718 @default.
- W4285253908 hasConceptScore W4285253908C56802139 @default.
- W4285253908 hasConceptScore W4285253908C71924100 @default.
- W4285253908 hasConceptScore W4285253908C80444323 @default.
- W4285253908 hasConceptScore W4285253908C93226319 @default.
- W4285253908 hasLocation W42852539081 @default.