Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285255714> ?p ?o ?g. }
- W4285255714 endingPage "314" @default.
- W4285255714 startingPage "293" @default.
- W4285255714 abstract "In recent development of machine learning (ML)-based medical image analysis that have contributed to the prediction, planning, and early diagnostic process. Different chronic hermitic diseases like blood cancer/leukemia, AIDs, malaria, anemia and even COVID-19, all these are diagnoses via analyzing leucocytes or white blood cells (WBCs). Leucocytes analysis is the process of detection, localization, counting, analyzing WBCs, and it perform an active role in clinical hematology to assist health specialists in early stage disease diagnosing process. An automatic leucocytes analysis provide valuable diagnostics facts to doctors, via they can automatically detect, blood cancer, brain tumor and significantly improve the hematological, pathological activities. Manual Detection, counting and classification of WBCs is very slow, challenging and boring task due to having complex overlapping and morphological uneven structure. In this chapter, we provide a concise analysis of available ML techniques, to use these techniques for leucocytes analysis in microscopic images. The main aim of this chapter is to identify high performer and suitable ML algorithms for WBCs analysis using blood microscopic smear images. In the proposed review study, the recent and most relevant research papers are collected from IEEE, Science Direct, springer, and web of science (WoS) with the following keywords: ‘leucocytes detection’ or ‘leucocytes classification’. This study gives an extensive review of MIA but the research focuses more on the ML-based leucocytes/WBCs analysis in smear images. These techniques include traditional machine learning (TML), deep learning (DL), convolutional neural network (CNN) models, hybrid learning, and attention learning-based techniques to analyze medical image modalities to detect and classify cells in smear images." @default.
- W4285255714 created "2022-07-14" @default.
- W4285255714 creator A5006616862 @default.
- W4285255714 creator A5011703110 @default.
- W4285255714 creator A5048466370 @default.
- W4285255714 creator A5052654998 @default.
- W4285255714 date "2022-01-01" @default.
- W4285255714 modified "2023-10-16" @default.
- W4285255714 title "A Review on Machine Learning-Based WBCs Analysis in Blood Smear Images: Key Challenges, Datasets, and Future Directions" @default.
- W4285255714 cites W1980276039 @default.
- W4285255714 cites W1987358959 @default.
- W4285255714 cites W2000897614 @default.
- W4285255714 cites W2033062769 @default.
- W4285255714 cites W2091463880 @default.
- W4285255714 cites W2093075920 @default.
- W4285255714 cites W2196598587 @default.
- W4285255714 cites W2229491714 @default.
- W4285255714 cites W2259775351 @default.
- W4285255714 cites W2402659155 @default.
- W4285255714 cites W2412322763 @default.
- W4285255714 cites W2485954569 @default.
- W4285255714 cites W2551596518 @default.
- W4285255714 cites W2566202426 @default.
- W4285255714 cites W2587640549 @default.
- W4285255714 cites W2588902739 @default.
- W4285255714 cites W2594392479 @default.
- W4285255714 cites W2598236886 @default.
- W4285255714 cites W2739179243 @default.
- W4285255714 cites W2759589131 @default.
- W4285255714 cites W2765934242 @default.
- W4285255714 cites W2767426931 @default.
- W4285255714 cites W2783733999 @default.
- W4285255714 cites W2793002108 @default.
- W4285255714 cites W2799742832 @default.
- W4285255714 cites W2801148351 @default.
- W4285255714 cites W2802644309 @default.
- W4285255714 cites W2803857835 @default.
- W4285255714 cites W2891686988 @default.
- W4285255714 cites W2894754687 @default.
- W4285255714 cites W2898491665 @default.
- W4285255714 cites W2904473961 @default.
- W4285255714 cites W2905707672 @default.
- W4285255714 cites W2914359968 @default.
- W4285255714 cites W2914373129 @default.
- W4285255714 cites W2917728795 @default.
- W4285255714 cites W2924872296 @default.
- W4285255714 cites W2928842276 @default.
- W4285255714 cites W2933609529 @default.
- W4285255714 cites W2943507717 @default.
- W4285255714 cites W2945576057 @default.
- W4285255714 cites W2945656161 @default.
- W4285255714 cites W2946194997 @default.
- W4285255714 cites W2959123891 @default.
- W4285255714 cites W2963712920 @default.
- W4285255714 cites W2984735686 @default.
- W4285255714 cites W2995864059 @default.
- W4285255714 cites W3004182657 @default.
- W4285255714 cites W3006315341 @default.
- W4285255714 cites W3011939472 @default.
- W4285255714 cites W3015930014 @default.
- W4285255714 cites W3023003315 @default.
- W4285255714 cites W3035727574 @default.
- W4285255714 cites W3035967575 @default.
- W4285255714 cites W3039748083 @default.
- W4285255714 cites W3042392478 @default.
- W4285255714 cites W3045506901 @default.
- W4285255714 cites W3048127440 @default.
- W4285255714 cites W3048804923 @default.
- W4285255714 cites W3084183795 @default.
- W4285255714 cites W3086545655 @default.
- W4285255714 cites W3087421454 @default.
- W4285255714 cites W3092605947 @default.
- W4285255714 cites W3096047223 @default.
- W4285255714 cites W3114200511 @default.
- W4285255714 cites W3114958142 @default.
- W4285255714 cites W3115044335 @default.
- W4285255714 cites W3117731702 @default.
- W4285255714 cites W3118276953 @default.
- W4285255714 cites W3119831909 @default.
- W4285255714 cites W3128834636 @default.
- W4285255714 cites W3137151006 @default.
- W4285255714 cites W3137244318 @default.
- W4285255714 cites W3138537816 @default.
- W4285255714 cites W3143978330 @default.
- W4285255714 cites W3161935136 @default.
- W4285255714 cites W3162412448 @default.
- W4285255714 cites W3168512119 @default.
- W4285255714 cites W3170889935 @default.
- W4285255714 cites W3194832751 @default.
- W4285255714 cites W3195881073 @default.
- W4285255714 cites W3198211691 @default.
- W4285255714 cites W3199135425 @default.
- W4285255714 cites W3200965593 @default.
- W4285255714 cites W3204587932 @default.
- W4285255714 cites W3214577639 @default.
- W4285255714 cites W4206549418 @default.
- W4285255714 cites W4213362076 @default.
- W4285255714 doi "https://doi.org/10.1007/978-981-19-2057-8_11" @default.