Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285255793> ?p ?o ?g. }
- W4285255793 endingPage "61566" @default.
- W4285255793 startingPage "61544" @default.
- W4285255793 abstract "Missing values are highly undesirable in real-world datasets. The missing values should be estimated and treated during the preprocessing stage. With the expansion of nature-inspired metaheuristic techniques, interest in missing value imputation (MVI) has increased. The main goal of this literature is to identify and review the existing research on missing value imputation (MVI) in terms of nature-inspired metaheuristic approaches, dataset designs, missingness mechanisms, and missing rates, as well as the most used evaluation metrics between 2011 and 2021. This study ultimately gives insight into how the MVI plan can be incorporated into the experimental design. Using the systematic literature review (SLR) guidelines designed by Kitchenham, this study utilizes renowned scientific databases to retrieve and analyze all relevant articles during the search process. A total of 48 related articles from 2011 to 2021 was selected to assess the review questions. This review indicated that the synthetic missing dataset is the most popular baseline test dataset to evaluate the effectiveness of the imputation strategy. The study revealed that missing at random (MAR) is the most common proposed missing mechanism in the datasets. This review also indicated that the hybridizations of metaheuristics with clustering or neural networks are popular among researchers. The superior performance of the hybrid approaches is significantly attributed to the power of optimized learning in MVI models. In addition, perspectives, challenges, and opportunities in MVI are also addressed in this literature. The outcome of this review serves as a toolkit for the researchers to develop effective MVI models." @default.
- W4285255793 created "2022-07-14" @default.
- W4285255793 creator A5001335357 @default.
- W4285255793 creator A5020563332 @default.
- W4285255793 creator A5042597849 @default.
- W4285255793 creator A5045569977 @default.
- W4285255793 creator A5088741163 @default.
- W4285255793 creator A5089742876 @default.
- W4285255793 date "2022-01-01" @default.
- W4285255793 modified "2023-09-30" @default.
- W4285255793 title "Missing Value Imputation Designs and Methods of Nature-Inspired Metaheuristic Techniques: A Systematic Review" @default.
- W4285255793 cites W1520108017 @default.
- W4285255793 cites W1849547295 @default.
- W4285255793 cites W1897957358 @default.
- W4285255793 cites W1963924386 @default.
- W4285255793 cites W1969106918 @default.
- W4285255793 cites W1972761923 @default.
- W4285255793 cites W1977418167 @default.
- W4285255793 cites W1992967823 @default.
- W4285255793 cites W2018575701 @default.
- W4285255793 cites W2026199832 @default.
- W4285255793 cites W2030605340 @default.
- W4285255793 cites W2039015671 @default.
- W4285255793 cites W2039240409 @default.
- W4285255793 cites W2045593919 @default.
- W4285255793 cites W2062232660 @default.
- W4285255793 cites W2066046820 @default.
- W4285255793 cites W2069858355 @default.
- W4285255793 cites W2079448859 @default.
- W4285255793 cites W2079576424 @default.
- W4285255793 cites W2105559915 @default.
- W4285255793 cites W2115969689 @default.
- W4285255793 cites W2132366653 @default.
- W4285255793 cites W2135951244 @default.
- W4285255793 cites W2137810087 @default.
- W4285255793 cites W2162016650 @default.
- W4285255793 cites W2162735386 @default.
- W4285255793 cites W2172156938 @default.
- W4285255793 cites W2397781679 @default.
- W4285255793 cites W2547024519 @default.
- W4285255793 cites W2549738163 @default.
- W4285255793 cites W2582515246 @default.
- W4285255793 cites W2591512686 @default.
- W4285255793 cites W2692405563 @default.
- W4285255793 cites W2703042647 @default.
- W4285255793 cites W2746770821 @default.
- W4285255793 cites W2750213292 @default.
- W4285255793 cites W2766238749 @default.
- W4285255793 cites W2771077948 @default.
- W4285255793 cites W2791086062 @default.
- W4285255793 cites W2808348275 @default.
- W4285255793 cites W2894412181 @default.
- W4285255793 cites W2908849044 @default.
- W4285255793 cites W2932881901 @default.
- W4285255793 cites W2943115740 @default.
- W4285255793 cites W2943378538 @default.
- W4285255793 cites W2948646149 @default.
- W4285255793 cites W2951612253 @default.
- W4285255793 cites W2954400269 @default.
- W4285255793 cites W2954672461 @default.
- W4285255793 cites W2961614712 @default.
- W4285255793 cites W2995100136 @default.
- W4285255793 cites W3002518602 @default.
- W4285255793 cites W3008902767 @default.
- W4285255793 cites W3012988874 @default.
- W4285255793 cites W3083279560 @default.
- W4285255793 cites W3085641574 @default.
- W4285255793 cites W3090910946 @default.
- W4285255793 cites W3122962710 @default.
- W4285255793 cites W3124552187 @default.
- W4285255793 cites W3125613031 @default.
- W4285255793 cites W3144823608 @default.
- W4285255793 cites W3153367717 @default.
- W4285255793 cites W3159352979 @default.
- W4285255793 cites W3187179976 @default.
- W4285255793 cites W3192542071 @default.
- W4285255793 cites W3197341971 @default.
- W4285255793 cites W3201276182 @default.
- W4285255793 cites W3203171934 @default.
- W4285255793 cites W3212196304 @default.
- W4285255793 cites W3216909614 @default.
- W4285255793 cites W3217140273 @default.
- W4285255793 cites W4200540962 @default.
- W4285255793 cites W4243369765 @default.
- W4285255793 cites W4252079552 @default.
- W4285255793 doi "https://doi.org/10.1109/access.2022.3172319" @default.
- W4285255793 hasPublicationYear "2022" @default.
- W4285255793 type Work @default.
- W4285255793 citedByCount "1" @default.
- W4285255793 countsByYear W42852557932022 @default.
- W4285255793 crossrefType "journal-article" @default.
- W4285255793 hasAuthorship W4285255793A5001335357 @default.
- W4285255793 hasAuthorship W4285255793A5020563332 @default.
- W4285255793 hasAuthorship W4285255793A5042597849 @default.
- W4285255793 hasAuthorship W4285255793A5045569977 @default.
- W4285255793 hasAuthorship W4285255793A5088741163 @default.
- W4285255793 hasAuthorship W4285255793A5089742876 @default.
- W4285255793 hasBestOaLocation W42852557931 @default.