Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285256561> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4285256561 endingPage "877" @default.
- W4285256561 startingPage "862" @default.
- W4285256561 abstract "The burgeoning volume of data from the IoT applications and intelligent devices processed on the cloud data centers can lead to network congestion and transmission delay. Compared to cloud computing, fog computing focuses on ubiquitous connected heterogeneous devices and addresses the transmission latency by placing the fog nodes at the network edge. Concerning the limited resources of fog nodes enable the computationally intensive tasks to offload on the cloud resources. Scheduling of deadline-constrained workflows with minimum execution cost is challenging due to complex and uncertain computation offloading problems. Therefore, an intelligent fuzzy scheduler is designed to offload tasks characterized with uncertain parameters to the appropriate resources. A new salp swarm algorithm has been exploited to learn and optimize fuzzy task-resource allocation rules. In addition to this, to overcome the shortcomings of the salp swarm algorithm, it is employed with one of the best opposition methods named: Fitness-based quasi-reflection method. The inclusion of the opposition method enhances the proposed ISSS-FQR (Intelligent salp swarm scheduler with the fitness-based quasi-reflection method) approach and improves the learning process. Simulation studies on the benchmark workflows are carried out to demonstrate the efficacy of ISSS-FQR. ISSS-FQR has been compared with the classical algorithms, including chemical reaction optimization and ant colony optimization algorithms for workflow scheduling problems (CR-AC), Cost-Makespan aware scheduling (Deadline-based CMaS), and Directional and non-local convergent particle swarm optimization (DNCPSO). From the analyzed result, ISSS-FQR outperforms the rest of the classical algorithms, which proves the effectiveness of ISSS-FQR. Note to Practitioners—This paper provides a novel method called ISSS-FQR for minimizing the cost of execution of IoT applications while satisfying the deadline constraint. An intelligent fuzzy scheduler is designed to offload tasks characterized with uncertain parameters to the appropriate resources. The ISSS-FQR combines the Salp Swarm Algorithm and the OBL method named FQR to learn the task-resource allocation rules. It is compared with three state-of-the-art algorithms called CR-AC, Deadline-based CMaS, and DNCPSO. From the analyzed result, it has been observed that ISSS-FQR outperforms the previous algorithms." @default.
- W4285256561 created "2022-07-14" @default.
- W4285256561 creator A5008868467 @default.
- W4285256561 creator A5020900616 @default.
- W4285256561 creator A5031421384 @default.
- W4285256561 creator A5059661467 @default.
- W4285256561 date "2023-04-01" @default.
- W4285256561 modified "2023-10-17" @default.
- W4285256561 title "Intelligent Salp Swarm Scheduler With Fitness Based Quasi-Reflection Method for Scientific Workflows in Hybrid Cloud-Fog Environment" @default.
- W4285256561 cites W1837982953 @default.
- W4285256561 cites W1997555206 @default.
- W4285256561 cites W2028351695 @default.
- W4285256561 cites W2045287414 @default.
- W4285256561 cites W2088723799 @default.
- W4285256561 cites W2114623221 @default.
- W4285256561 cites W2122016301 @default.
- W4285256561 cites W2126105956 @default.
- W4285256561 cites W2137314627 @default.
- W4285256561 cites W2139469116 @default.
- W4285256561 cites W2160096392 @default.
- W4285256561 cites W2594536436 @default.
- W4285256561 cites W2738900493 @default.
- W4285256561 cites W2760225670 @default.
- W4285256561 cites W2770765408 @default.
- W4285256561 cites W2897468175 @default.
- W4285256561 cites W2898726528 @default.
- W4285256561 cites W2905059958 @default.
- W4285256561 cites W2905838702 @default.
- W4285256561 cites W2921589114 @default.
- W4285256561 cites W2940867210 @default.
- W4285256561 cites W2954522583 @default.
- W4285256561 cites W2967207255 @default.
- W4285256561 cites W2967405620 @default.
- W4285256561 cites W2979258553 @default.
- W4285256561 cites W3013620898 @default.
- W4285256561 cites W3025527686 @default.
- W4285256561 cites W3041773420 @default.
- W4285256561 cites W3126132476 @default.
- W4285256561 cites W3138456380 @default.
- W4285256561 cites W3141568517 @default.
- W4285256561 doi "https://doi.org/10.1109/tase.2022.3170549" @default.
- W4285256561 hasPublicationYear "2023" @default.
- W4285256561 type Work @default.
- W4285256561 citedByCount "2" @default.
- W4285256561 countsByYear W42852565612023 @default.
- W4285256561 crossrefType "journal-article" @default.
- W4285256561 hasAuthorship W4285256561A5008868467 @default.
- W4285256561 hasAuthorship W4285256561A5020900616 @default.
- W4285256561 hasAuthorship W4285256561A5031421384 @default.
- W4285256561 hasAuthorship W4285256561A5059661467 @default.
- W4285256561 hasConcept C111919701 @default.
- W4285256561 hasConcept C119857082 @default.
- W4285256561 hasConcept C120314980 @default.
- W4285256561 hasConcept C126255220 @default.
- W4285256561 hasConcept C154945302 @default.
- W4285256561 hasConcept C177212765 @default.
- W4285256561 hasConcept C206729178 @default.
- W4285256561 hasConcept C33923547 @default.
- W4285256561 hasConcept C40128228 @default.
- W4285256561 hasConcept C41008148 @default.
- W4285256561 hasConcept C55416958 @default.
- W4285256561 hasConcept C68387754 @default.
- W4285256561 hasConcept C77088390 @default.
- W4285256561 hasConcept C79974875 @default.
- W4285256561 hasConcept C85617194 @default.
- W4285256561 hasConceptScore W4285256561C111919701 @default.
- W4285256561 hasConceptScore W4285256561C119857082 @default.
- W4285256561 hasConceptScore W4285256561C120314980 @default.
- W4285256561 hasConceptScore W4285256561C126255220 @default.
- W4285256561 hasConceptScore W4285256561C154945302 @default.
- W4285256561 hasConceptScore W4285256561C177212765 @default.
- W4285256561 hasConceptScore W4285256561C206729178 @default.
- W4285256561 hasConceptScore W4285256561C33923547 @default.
- W4285256561 hasConceptScore W4285256561C40128228 @default.
- W4285256561 hasConceptScore W4285256561C41008148 @default.
- W4285256561 hasConceptScore W4285256561C55416958 @default.
- W4285256561 hasConceptScore W4285256561C68387754 @default.
- W4285256561 hasConceptScore W4285256561C77088390 @default.
- W4285256561 hasConceptScore W4285256561C79974875 @default.
- W4285256561 hasConceptScore W4285256561C85617194 @default.
- W4285256561 hasIssue "2" @default.
- W4285256561 hasLocation W42852565611 @default.
- W4285256561 hasOpenAccess W4285256561 @default.
- W4285256561 hasPrimaryLocation W42852565611 @default.
- W4285256561 hasRelatedWork W2004305199 @default.
- W4285256561 hasRelatedWork W2786808640 @default.
- W4285256561 hasRelatedWork W2971440088 @default.
- W4285256561 hasRelatedWork W3089783200 @default.
- W4285256561 hasRelatedWork W3171778898 @default.
- W4285256561 hasRelatedWork W3216465344 @default.
- W4285256561 hasRelatedWork W4225142619 @default.
- W4285256561 hasRelatedWork W4226129113 @default.
- W4285256561 hasRelatedWork W4285820381 @default.
- W4285256561 hasRelatedWork W4293254066 @default.
- W4285256561 hasVolume "20" @default.
- W4285256561 isParatext "false" @default.
- W4285256561 isRetracted "false" @default.
- W4285256561 workType "article" @default.